Influence of SiO2 Nanoparticles on the Characteristics of a Polyvinyl Alcohol-Based Proton Exchange Composite Membrane

  • U.F. Berdiev U.A. Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan https://orcid.org/0000-0003-2808-0105
  • I.Kh. Khudaykulov U.A. Arifov Institute of Ion-Placma and Laser Technologies, Academy of Sciences of Uzbekistan https://orcid.org/0000-0002-2335-4456
  • Sh.Ch. Iskandarov U.A. Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan https://orcid.org/0000-0002-3002-9141
  • A.J. Amirova U.A. Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
  • Kh.B. Ashurov U.A. Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan https://orcid.org/0000-0002-7604-2333
Keywords: Proton exchange membrane, Nanocomposite membranes, Polyvinyl alcohol-based separation membranes, Nafion117, Vanadium redox flow batteries, Tetroethoxysilan, Alkylbenzosulfonic acid

Abstract

This paper presents a study of nanocomposite membranes based on cross-linked polyvinyl alcohol with silica nanoparticles, fabricated by solution casting, for application in vanadium redox batteries (VRFBs). The structure of the membranes was studied by Fourier transform infrared spectroscopy (FT-IR). It was found that the nanoparticles were successfully integrated into the matrix of the proton exchange membrane to improve its performance. The synthesis of silica nanoparticles by in situ sol-gel method in polymer solution showed better performance compared to the addition of prepared nanoparticles. The membrane properties such as mechanical properties, water absorption, ion exchange material (IEM), proton conductivity and permeability to vanadium ions were investigated. The nanocomposite membranes showed higher water absorption, IEM and lower permeability for vanadium ions compared to Nafion117 membrane. The test results of single cell VRFB with nanocomposite membranes showed higher Coulomb yield (CE) and efficiency (EE) up to 81.51% compared to Nafion117. The self-discharge rate of VRFBs with nanocomposite membranes was lower than that of Nafion117. After 50 test cycles, the nanocomposite membrane showed stable battery performance. The results indicate that nanocomposite membranes are a promising and affordable alternative material for Nafion117 in VRFBs.

Downloads

References

M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, and J.E. McGrath, “Alternative polymer systems for proton exchange membranes (PEMs),” Chem. Rev. 104, 4587-4611 (2004). https://doi.org/10.1021/cr020711a

C.H. Lin, M.C. Yang, and H.J. Wei, “Amino-silica modified Nafion membrane for vanadium redox flow battery,” Journal of Power Sources, 282, pp.562–571 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.102

M.-S. Kang, Y.-J. Choi, I.-J. Choi, T.-H. Yoon, and S.-H. Moon, “Electrochemical characterization of sulfonated poly(arylene ether sulfone) (S-PES) cation-exchange membranes,” J. Membr. Sci. 216, 39–53 (2003). https://doi.org/10.1016/S0376-7388(03)00045-0

X. Zhang, Q. Liu, L. Xia, D. Huang, X. Fu, R. Zhang, S. Hu, et al., “Poly (2, 5-benzimidazole)/sulfonated sepiolite composite membranes with low phosphoric acid doping levels for PEMFC applications in a wide temperature range,” Journal of membrane science, 574, 282-298 (2019). https://doi.org/10.1016/j.memsci.2018.12.085

R.K. Nagarale, G.S. Gohil, and V.K. Shahi, “Recent developments on ion-exchange membranes and electro-membrane processes,” Adv. Colloid Interface Sci. 119, 97–130 (2006). https://doi.org/10.1016/j.cis.2005.09.005

M.K. Pagels, S. Adhikari, R.C. Walgama, A. Singh, J. Han, D. Shin, and C. Bae, “One-Pot Synthesis of Proton Exchange Membranes from Anion Exchange Membrane Precursors,” ACS Macro Lett. 9, 1489–1493 (2020). https://doi.org/10.1021/acsmacrolett.0c00550

P.K. Prajapati, N.N. Reddy, R. Nimiwal, P.S. Singh, S. Adimurthy, and R.K. Nagarale, “Polyaniline@porous polypropylene for efficient separation of acid by diffusion dialysis,” Sep. Purif. Technol. 233, 115989 (2020). https://doi.org/10.1016/j.seppur.2019.115989

G.M. Aparicio, R.A. Vargas, and P.R. Bueno, “Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes,” J. Non Cryst. Solids, 522, 119520 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119520

Y. Jin, J.C. Diniz da Costa, and G.Q. Lu, “Proton conductive composite membrane of phosphisilicate and polyvinyl alcohol,” Solid State Ion. 178, 937–942 (2007). https://doi.org/10.1016/j.ssi.2007.04.005

V.M. Rotshteyn, T.K. Turdaliev, and Kh.B. Ashurov, “On the Question of the Possibility of Using Nanocrystalline Porous Silicon in Silicon-Based Solar Cells,” Applied Solar Energy, 57(6), 480–485 (2021). https://doi.org/10.3103/S0003701X21060153

T. Kamjornsupamitr, T. Sangthumchai, S. Youngme, and S. Martwiset, “Proton conducting composite membranes from crosslinked poly(vinyl alcohol) and poly(styrene sulfonic acid)-functionalized silica nanoparticles,” Int. J. Hydrogen Energy, 43, 11190–11201 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.198

U. Berdiev, I. Khudaykulov, Sh. Iskandarov, and T. Turdaliev, “Mechanical properties of a proton exchange composite membrane synthesized on the basis of polyvinyl alcohol,” Uzbek Physical Journal, 25(4), 72-76 (2024). https://doi.org/10.52304/.v25i4.479 (in Russian)

Y. Zhang, M. Guo, H. Yan, G. Pan, J. Xu, Y. Shi, and Y. Liu, “Novel organic–inorganic hybrid composite membranes for nanofiltration of acid and alkaline media,” RSC Adv. 4, 57522 (2014). https://doi.org/10.1039/C4RA09090J

Y. Wang, D. Wang, J. Wang, and L. Wang, “Preparation and characterization of a sol-gel derived silica/PVA-Py hybrid anion exchange membranes for alkaline fuel cell application,” J. Electroanal. Chem. 873, 114342 (2020). https://doi.org/10.1016/j.jelechem.2020.114342

J.M. Dodda, P. Belský, J. Chmelar, T. Remis, K. Cmolna, M. Tomáš, L. Kullova, et al., “Comparative study of PVA/SiO2 and PVA/SiO2/glutaraldehyde (GA) nanocomposite membranes prepared by single-step solution casting method.” J. Mater. Sci. 50, 6477–6490 (2015). https://doi.org/10.1007/s10853-015-9206-7

E. Sgreccia, et al., “Silica containing composite anion exchange membranes by sol–gel synthesis: A short review,” Polymers, 13(11), 1874 (2021). https://doi.org/10.3390/polym13111874

H. Beydaghi, M. Javanbakht, and A. Badiei, “Cross-linked poly(vinyl alcohol)/sulfonated nanoporous silica hybrid membranes for proton exchange membrane fuel cell,” J. Nanostruct. Chem. 4, 97 (2014). https://doi.org/10.1007/s40097-014-0097-y

S.N. Hegde, B.B. Manuvalli, and M.Y. Kariduraganavar, “A Unique Approach for the Development of Hybrid Membranes by Incorporating Functionalized Nanosilica into Crosslinked sPVA/TEOS for Fuel Cell Applicationsm” ACS Appl. Energy Mater. 5, 9823–9829 (2022). https://doi.org/10.1021/acsaem.2c01525

C. Panawong, S. Tasari, P. Saejueng, and S. Budsombat, “Composite proton conducting membranes from crosslinked poly(vinyl alcohol)/chitosan and silica particles containing poly(2-acrylamido-2-methyl-1-propansulfonic acid),” J. Appl. Polym. Sci. 139, 51989 (2022). https://doi.org/10.1002/app.51989

M. Kurbanov, S. Tulaganov, U. Nuraliev, L. Andriyko, O. Goncharuk, N. Guzenko, Y. Nychyporuk, et al., “Comparative characteristics of the structure and physicochemical properties of silica synthesized by pyrogenic and fluoride methods,” Silicon, 15(3), 1221-1233 (2023). https://doi.org/10.1007/s12633-022-02087-7

G.J. Hwang, and H. Ohya, “Preparation of cation exchange membrane as a separatorfor the all-vanadium redox flow battery, J. Membrane Sci. 120, 55(1996). https://doi.org/10.1016/0376-7388(96)00135-4

V.V. Binsu, R.K. Nagarale, V.K. Shahi, and P.K. Ghosh, “Studies on N-methylene phosphonic chitosan/poly(vinyl alcohol) composite proton-exchange membrane,” React. Funct. Polym. 66, 1619–1629 (2006). https://doi.org/10.1016/j.reactfunctpolym.2006.06.003

R.K. Nagarale, G.S. Gohil, V.K. Shahi, and R. Rangarajan, “Preparation of organic–inorganic composite anion-exchange membranes via aqueous dispersion polymerization and their characterization,” J. Colloid Interface Sci. 287, 198–206 (2005). https://doi.org/10.1016/j.jcis.2005.01.074

D.S. Kim, H.B. Park, J.W. Rhim, and Y.M. Lee, “Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications,” J. Memb. Sci. 240, 37-48 (2004). https://doi.org/10.1016/j.memsci.2004.04.010

Published
2025-03-03
Cited
How to Cite
Berdiev, U., Khudaykulov, I., Iskandarov, S., Amirova, A., & Ashurov, K. (2025). Influence of SiO2 Nanoparticles on the Characteristics of a Polyvinyl Alcohol-Based Proton Exchange Composite Membrane. East European Journal of Physics, (1), 265-271. https://doi.org/10.26565/2312-4334-2025-1-30