Studying the Effect of Transport Layers on ZrS2/MEH-PPV Solar Cells: Using SCAPS -1D Software

  • Marwan S. Mousa Department of Renewable Energy Engineering, Jadara University, Irbid, Jordan
  • Hmoud Al Dmour Department of Physics, Faculty of Science, Mu’tah University, Mu’tah, Jordan https://orcid.org/0000-0001-5680-5703
  • Emad K. Jaradat Department of Physics, Faculty of Science. Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabi
  • Osama Y. Al-Madanat Department of Chemistry, Faculty of Science, Mu’tah University, Mu’tah, Jordan
  • Ahmad M.D. (Assa’d) Jaber Department of Basic Humanities and Science, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, Jordan
  • Beddiaf Zaidi Department of Physics, Faculty of Material Sciences, University of Batna, Batna, Algeria
  • Ahmet Sait Alali Department of Physics, Yıldız Technical University, Istanbul, Turkey
  • V. Aravindan Smart Materials Lab, Department of Physics, Thiagarajar College of Engineering, Madurai, India
Keywords: SCAPS simulation, Solar cells, Doping density, Interface Defect, Work function

Abstract

This study investigates the effect of charge transport layers on the efficiency of Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH_PPV) and Zirconium Disulfide (ZrS₂) solar cells using Scaps-1D software. It was found that by increasing the MEH-PPV thickness and decreasing its acceptor doping concentration, the efficiency (μ%), fill factor (FF), and short-circuit current density (Jsc ) decreased. Conversely, increasing the thickness of the ZrS₂ electron transport layer and decreasing its donor doping density enhanced the efficiency (μ%) and short-circuit current density (Jsc) while maintaining a constant open-circuit voltage (Voc). These results can be attributed to decreased charge separation and collection in MEH-PPV and reduced optical path length in ZrS2. On the other hand, the back contact with work function is below 4.65 eV, the MEH-PPV/ZrS2 solar cells produced the lowest efficiency compared to different types of back contact. Under optimal conditions, MEH-PPV/ZrS2 solar cell shows a high efficiency of 21% when the dopant concentration of MEH-PPV and the value of the neutral defect density at the ZrS2/ MEH-PPV interface are 1022 cm-3 and 109 cm-3 respectively.

Downloads

Download data is not yet available.

Author Biography

Hmoud Al Dmour, Department of Physics, Faculty of Science, Mu’tah University, Mu’tah, Jordan

Professor in Physics, Mutah University.

References

N. Kumar, and K. Chandra, Journal of Materiomics, 7(5), 940 (2021). https://doi.org/10.1016/j.jmat.2021.04.002

S. Liu, V. Biju, Y. Qi, et al., NPG Asia Materials, 15, 1 (2023). https://doi.org/10.1038/s41427-023-00474-z

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Journal of the American chemical society, 131, 6050 (2009). https://doi.org/10.1021/ja809598r

H. Al-Dmour, R.H. Alzard, R.H.H. Alblooshi, K. Alhosani, S. AlMadhoob, and N. Saleh, Front Chemistry, 7, 561 (2019). https://doi.org/10.3389/fchem.2019.00561

R. Ranjanm, A. Nikhi, et al., Scientific Report, 13. 1 (2023). https:/doi: 10.1038/s41598-023-44845-6

H. Al-Dmour, East European Journal of Physics, (2), 445 (2024). https://doi.org/10.26565/2312-4334-2024-2-58

S. Lee, J. Li, S. Lee, C. Moon, Y. Kim, J. Cao, and C. Jhun, Molecules, 26(9), 2512 (2021). https://doi.org/10.3390/molecules26092512

W. Brütting, Nature. Material, 18, 432 (2019). https://doi.org/10.1038/s41563-019-0329-0

S. Al-Taweel, S. Al-Trawneh, H. Al-Dmour, O. Al-Gzawat, W. Alhalasah, and M. Mousa, Heliyon, 9(10), 21039 (2023). https://doi.org/10.1016/j.heliyon.2023.e21039

R. Suryana, et al., IOP Conference series: Materials Science and Engineering, 333, 012022 (2018). https://doi:10.1088/1757-899X/333/1/012022.

A. Reshak, M. Shahimin, N. Juhari, R. Vairavan, Current Applied Physics, 13, 1894 (2013). https://doi.org/10.1016/j.cap.2013.07.023

H. Chen, T. Huang, T. Chang, et al., Scientific Report, 6, 34319 (2016). https://doi.org/10.1038/srep34319

R. Chaymaa, et al., Matériaux and Techniques, 111, 507 (2023). https://doi.org/10.1051/mattech/2024003

Al-Dmour, H., Salah Al-Trawneh, and Samir Al-Taweel, International Journal of Advanced and Applied Sciences 8(6), 128 (2021). https://doi.org/10.21833/ijaas.2021.06.015

M. Burgelman, P. Nollet, and S. Degrave, Thin Solid Films, 361, 527 (2000). https://doi.org/10.1016/S0040-6090(99)00825-1

H. Amina, G. Yigit, M. Begrettin, and K. Hamdi, Optical Materials, 121, 111544 (2021). https://doi.org/10.1016/j.optmat.2021.111544

M. Abdelfatah, A. El Sayed, W. Ismail, et al., Scientific Report, 13 4553 (2023). https://doi.org/10.1038/s41598-023-31553-4

D. Lee, and K. Kim, Nanomaterials, 13, 1848 (2023). https://doi.org/10.3390/nano13121848

A. Bradesko, et al., Journal of Material Chemistry, 9, 3204 (2021). https://doi.org/10.1039/D0TC05854H

A. Mortadi, E. Hafidi, M. Monkade, R. El Moznine, Materials Science for Energy Technologies, 7, 158-165 (2024). https://doi.org/10.1016/j.mset.2023.10.001

A. Chowdhur, Acta Physica Polonica A, 145, 215 (2024). https://doi.org/10.12693/APhysPolA.145.215

A. Trukhanov, V. Bruevich, and Yu. Paraschuk, Physical Review B, 84, 5318 (2011). https://doi.org/10.1103/PhysRevB.84.205318

H. Al Dmour, AIMS Materials, 8, 261 (2021). https://doi.org/10.3934/matersci.2021017

R. Priyanka, S. Numeshwar, T. Sanjay, and K. Khare, IOP Conf. Series: Materials Science and Engineering, 798, 012020 (2020). https://doi.org/10.1088/1757-899X/798/1/012020

Published
2024-12-08
Cited
How to Cite
Mousa, M. S., Al Dmour, H., Jaradat, E. K., Al-Madanat, O. Y., Jaber, A. M. (Assa’d), Zaidi, B., Alali, A. S., & Aravindan, V. (2024). Studying the Effect of Transport Layers on ZrS2/MEH-PPV Solar Cells: Using SCAPS -1D Software. East European Journal of Physics, (4), 419-426. https://doi.org/10.26565/2312-4334-2024-4-49