Studying the Effect of Transport Layers on ZrS2/MEH-PPV Solar Cells: Using SCAPS -1D Software
Abstract
This study investigates the effect of charge transport layers on the efficiency of Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH_PPV) and Zirconium Disulfide (ZrS₂) solar cells using Scaps-1D software. It was found that by increasing the MEH-PPV thickness and decreasing its acceptor doping concentration, the efficiency (μ%), fill factor (FF), and short-circuit current density (Jsc ) decreased. Conversely, increasing the thickness of the ZrS₂ electron transport layer and decreasing its donor doping density enhanced the efficiency (μ%) and short-circuit current density (Jsc) while maintaining a constant open-circuit voltage (Voc). These results can be attributed to decreased charge separation and collection in MEH-PPV and reduced optical path length in ZrS2. On the other hand, the back contact with work function is below 4.65 eV, the MEH-PPV/ZrS2 solar cells produced the lowest efficiency compared to different types of back contact. Under optimal conditions, MEH-PPV/ZrS2 solar cell shows a high efficiency of 21% when the dopant concentration of MEH-PPV and the value of the neutral defect density at the ZrS2/ MEH-PPV interface are 1022 cm-3 and 109 cm-3 respectively.
Downloads
References
N. Kumar, and K. Chandra, Journal of Materiomics, 7(5), 940 (2021). https://doi.org/10.1016/j.jmat.2021.04.002
S. Liu, V. Biju, Y. Qi, et al., NPG Asia Materials, 15, 1 (2023). https://doi.org/10.1038/s41427-023-00474-z
A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Journal of the American chemical society, 131, 6050 (2009). https://doi.org/10.1021/ja809598r
H. Al-Dmour, R.H. Alzard, R.H.H. Alblooshi, K. Alhosani, S. AlMadhoob, and N. Saleh, Front Chemistry, 7, 561 (2019). https://doi.org/10.3389/fchem.2019.00561
R. Ranjanm, A. Nikhi, et al., Scientific Report, 13. 1 (2023). https:/doi: 10.1038/s41598-023-44845-6
H. Al-Dmour, East European Journal of Physics, (2), 445 (2024). https://doi.org/10.26565/2312-4334-2024-2-58
S. Lee, J. Li, S. Lee, C. Moon, Y. Kim, J. Cao, and C. Jhun, Molecules, 26(9), 2512 (2021). https://doi.org/10.3390/molecules26092512
W. Brütting, Nature. Material, 18, 432 (2019). https://doi.org/10.1038/s41563-019-0329-0
S. Al-Taweel, S. Al-Trawneh, H. Al-Dmour, O. Al-Gzawat, W. Alhalasah, and M. Mousa, Heliyon, 9(10), 21039 (2023). https://doi.org/10.1016/j.heliyon.2023.e21039
R. Suryana, et al., IOP Conference series: Materials Science and Engineering, 333, 012022 (2018). https://doi:10.1088/1757-899X/333/1/012022.
A. Reshak, M. Shahimin, N. Juhari, R. Vairavan, Current Applied Physics, 13, 1894 (2013). https://doi.org/10.1016/j.cap.2013.07.023
H. Chen, T. Huang, T. Chang, et al., Scientific Report, 6, 34319 (2016). https://doi.org/10.1038/srep34319
R. Chaymaa, et al., Matériaux and Techniques, 111, 507 (2023). https://doi.org/10.1051/mattech/2024003
Al-Dmour, H., Salah Al-Trawneh, and Samir Al-Taweel, International Journal of Advanced and Applied Sciences 8(6), 128 (2021). https://doi.org/10.21833/ijaas.2021.06.015
M. Burgelman, P. Nollet, and S. Degrave, Thin Solid Films, 361, 527 (2000). https://doi.org/10.1016/S0040-6090(99)00825-1
H. Amina, G. Yigit, M. Begrettin, and K. Hamdi, Optical Materials, 121, 111544 (2021). https://doi.org/10.1016/j.optmat.2021.111544
M. Abdelfatah, A. El Sayed, W. Ismail, et al., Scientific Report, 13 4553 (2023). https://doi.org/10.1038/s41598-023-31553-4
D. Lee, and K. Kim, Nanomaterials, 13, 1848 (2023). https://doi.org/10.3390/nano13121848
A. Bradesko, et al., Journal of Material Chemistry, 9, 3204 (2021). https://doi.org/10.1039/D0TC05854H
A. Mortadi, E. Hafidi, M. Monkade, R. El Moznine, Materials Science for Energy Technologies, 7, 158-165 (2024). https://doi.org/10.1016/j.mset.2023.10.001
A. Chowdhur, Acta Physica Polonica A, 145, 215 (2024). https://doi.org/10.12693/APhysPolA.145.215
A. Trukhanov, V. Bruevich, and Yu. Paraschuk, Physical Review B, 84, 5318 (2011). https://doi.org/10.1103/PhysRevB.84.205318
H. Al Dmour, AIMS Materials, 8, 261 (2021). https://doi.org/10.3934/matersci.2021017
R. Priyanka, S. Numeshwar, T. Sanjay, and K. Khare, IOP Conf. Series: Materials Science and Engineering, 798, 012020 (2020). https://doi.org/10.1088/1757-899X/798/1/012020
Copyright (c) 2024 Marwan S. Mousa, Hmoud Al-Dmour, Emad K. Jaradat, Osama Y. Al-Madanat, Ahmad M.D. (Assa’d) Jaber, Beddiaf Zaidi, Ahmet Sait Alali, V. Aravindan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).