Elastic Properties of C-Type Lanthanide Sesquioxides

  • Pooja Yadav Department of Physics, Agra College, Agra, India
  • Dheerendra Singh Yadav Department of Physics, Ch. Charan Singh P G College Heonra (Saifai) Etawah, India https://orcid.org/0000-0001-8315-9743
  • Dharmvir Singh Department of Physics, Agra College, Agra, India
  • Pravesh Singh Department of Electronics and Communication Engineering, KIET Groups of Institutions, Ghaziabad, India
  • Ajay Singh Verma Division of Research & Innovation, School of Applied and Life Sciences, Uttaranchal University, Uttarakhand, Dehradun, India; University Centre for Research & Development, Department of Physics, Chandigarh University, Mohali, Punjab India https://orcid.org/0000-0001-8223-7658
Keywords: Elastic properties, Plasmon energy, Ln2O3

Abstract

In this study, we have presented the solid-state theory of plasma oscillations to investigate the anisotropic elastic properties such as three independent static elastic stiffness constants (Cij: C11, C12 & C44) of C-type Ln2O3 lanthanide solids. The calculated values of the static elastic stiffness constants of Ln2O3 are in excellent agreement with the theoretical results obtained by using ab-initio techniques. The values of elastic stiffness constants (Cij) exhibit a linear relationship when plotted against their plasma energies and lie on a straight line. To further examine the validity of the present estimations on elastic moduli and other parameters of these materials. The mechanical moduli such as bulk modulus (B), shear modulus (G), Young modulus (E), Poisson’s ratio (ν), shear wave constant (Cs), Cauchy pressure (C*), Lame’s coefficient (λ and µ), Kleinman parameter (ξ) Grunesien parameter (γ), Zener anisotropic constant (Z) and Pugh ratio (G/B) of lanthanide solids have also been investigated. For the lanthanide sesquioxide materials, the values of static elastic stiffness constants Cij and elastic moduli were presented for the first time. Unfortunately, in the current study, for many parameters of these materials, experimental results were not found for a comparison with our theoretical predictions. Our estimations agree well with the available experimental data and other theoretical reports.

Downloads

Download data is not yet available.

References

K.A. Gschneidner, and L. Erying, Handbook on the Physics and Chemistry of Rare Earths, Vol. 1-40, 202 (1978-2010).

S. Jiang, J. Liu, X.-D. Li, Y.-C. Li, S.-M. He, and J.-C. Zhang, Chin. Phys. Lett. 36(4), 046103 (2019). https://doi.org/10.1088/0256-307X/36/4/046103

J. Łazewski, M. Sternik, P.T. Jochym, J. Kalt, S. Stankov, A.I. Chumakov, J. Göttlicher, et al., Inorg. Chem. 60(13), 9571 (2021). https://doi.org/10.1021 /acs.inorgchem.1c00708

J. Ibanez, J.Á. Sans, V. Cuenca-Gotor, R. Oliva, O. Gomis, P. Rodriguez-Hernandez, A. Munoz, et al., Inorg. Chem. 59(14), 9648 (2020). https://dx.doi.org/10.1021/acs.inorgchem.0c00834

S. Jiang, J. Zhang, L. Wang, C. Lin, S. Yan, J. Liu, A. Li, and R. Tai, AIP Advances, 13, 095018 (2023). https://doi.org/10.1063/5.0164684

S. Jiang, J. Zhang, and S. Yan, AIP Advances, 13, 055308 (2023). https://doi.org/10.1063/5.0140946

Y. He, M. Chen, Y. Jiang, L. Tang, J. Yu, Y. Chen, M. Fu, et al., J. Alloys Compd. 903, 163806 (2022). https://doi.org/10.1016/j.jallcom.2022.163806

L. Erying, Handbook on the Physics and Chemistry of Rare Earths, 3, 337-339 (1997).

V.P. Zhuze, and A.I. Shelykh, Sov. Phys. Semicond. 23, 245 (1989).

H.R. Hoekstra, and K.A. Gingerich, Science, 146, 1163 (1964). https://doi.org/10.1126/science. 146.3648.1163

G. Adachi, and N. Imanaka, Chemical Reviews, 98, 1479 (1998). https://doi.org/10.1021/cr940055h

M. Rahm, and N.V. Skorodumova, Phys. Rev. B80, 104105 (2009). https://doi.org/10.1103 /PhysRevB.80.104105

L. Petit, A. Svane, Z. Szotek, and W.M. Temmerman, Phys. Rev. B, 72, 205118 (2005). https://doi.org/10.1103/PhysRevB.72.205118

N. Hirosaki, S. Ogata, and C. Kocer, J. Alloys Compds. 351, 31 (2003). https://doi.org /10.1016 /S0925-8388(02)01043-5

A. Prokofiev, A.I. Shelykh, and B.T. Melekh, J. Alloys Compds. 242, 41 (1996). https://doi.org/10. 1016/0925-8388(96)02293-1

N. Singh, S.M. Saini, T. Nautiyal, and S. Auluck, J. Appl. Phys. 100, 083525 (2006). https://doi.org /10.1063/1.2353267

A.K. Pathak, and T. Vazhappilly, Phys. Stat. Sol. (b) 255, 1700668 (2018). https://doi.org/10.1002 /pssb.201700668

D. Rechard, E.L. Munoz, M. Renteria, L.A. Errico, A. Svane, and N.E. Christensen, Phys. Rev. B, 88, 165206 (2013). https://doi.org/10.1103/PhysRevB.88.165206

J. Sheng, B.L. Gang, L. Jing, X.W. Sheng, L.X. Dong, L.Y. Chun, T.L. Yun, et al., Chin. Phys. Lett. 26, 076101 (2009). https://doi.org/10.1088/0256-307X/26/7/076101

K.A. Irshad, P. Anees, R. Rajitha, T.R. Ravindran, V. Srihari, S. Kalavathi, and N.V. Chandra Shekar, Journal of Alloys and Compounds 822, 153657 (2020). https://doi.org/10.1016/j.jallcom.2020.153657

A.F. Andreeva, and I.Y. Gilman, Zh. Prikl. Spectrosk, 28, 895 (1978). Ref. no. – AIX-10-431358, EDB-79-100351

M.V. Avrashev, N.D. Todorov, and J. Geshev, J. Appl. Phys. 116, 103508 (2014). https://doi.org/10.1063/1.4894775

S. Jiang, J. Liu, C. Lin, L. Bai, Y. Zhangb, X. Li, Y. Li, et al., Solid State Communications 169, 37 (2013). https://doi.org/10.1016/j.ssc.2013.06.027

V.I. Marchenko, Electronic Structure and Physico Chemical Properties of Refractory Compounds and alloys, 193, (1980).

M. Shafiq, S. Arif, I. Ahmad, S.J. Asadabadi, M. Maqbool, and H.A.R. Aliabad, J. Alloys Compds. 618, 292 (2015). https://doi.org/10.1016/j.jallcom.2014.08.171

H. Jiang, P. Rinke, and M. Scheffler, Phys. Rev. B, 86, 125115 (2012). https://doi.org/10.1103/ PhysRevB.86. 125115

A.S. Verma, Solid State Communication, 149, 1236 (2009). https://doi.org/10.1016/j.ssc.2009.04.011

D.S. Yadav, and S. P. Singh, Phys. Scr. 82, 065705 (2010). https://doi.org/10.1088/0031-8949/82/06/065705

D.S. Yadav and A.S. Verma, Int. J. Mod. Phys. B, 26, 1250020 (2012). https://doi.org/10.1142/ S02179792 12500208

A. S. Verma, S. Sharma, and V.K. Jindal, Mod. Phys. Lett. B, 24, 2511 (2010). https://doi.org /10.1142/ S0217984910024821

R. Bhati, D.S. Yadav, R.C. Gupta, A.S. Verma, Materials Physics and Mechanics, 51(5), 90 (2023). http://dx.doi.org/10.18149/MPM.5152023-9

V. K. Srivastava, Phys. Rev. B, 29(12), 6993 (1984). https://doi.org/10.1103/PhysRevB.29.6993

A.S. Verma, Phys. Scr. 79, 045703 (2009). https://doi.org/10.1088/0031-8949/79/04/045703; A.S. Verma, N. Pal, B.K. Sarkar, R. Bhandari, and V.K. Jindal, Phys. Scr. 85, 015705 (2012). https://doi.org/10.1088/0031-8949/85/01/015705

S.K. Gorai, and P. Mahto, Indian J. Phys., 86(4), 273 (2012). https://doi.org/10.1007/s12648-012-0053-y

D. S. Yadav and D.V. Singh, Phys. Scr., 85, 015701 (2012). https://doi.org/10.1088/0031-8949/85/01/015701

D.S. Yadav, J. Alloy. Compds. 507, 250 (2012). https://doi.org/10.1016/j.jallcom.2012.05.016

D.S. Yadav, J. Mater. Chem. Phys, 3, 6 (2015). https://doi.org/10.12691/jmpc-3-1-2

R. Bhatti, D.S. Yadav, P. Vershney, R.C. Gupta, A.S. Verma, East European Journal of Physics 1, 222 (2023). https://doi.org/10.26565/2312-4334-2023-1-29

D.S. Yadav, and A.S. Verma, Int. J. Mod. Phys. B, 26, 1250020 (2012). https://doi.org/10.1142 /S0217979212500208

N. Yadav, D.S. Yadav, P. Varshney, R.C. Gupta, American Journal of Physics and Applications 11(4), 80 (2023). https://doi.org/10.11648/j.ajpa.20231104.11

A.S. Verma, Materials Science in Semiconductor Processing, 29, 2 (2015). https://doi.org/10.1016 /j.mssp .2014.05.033

H.J. Frost, and M.F. Ashby, Deformation-Mechanism Maps, (Pergamon, Oxford, (1982).

A.S. Verma, S. Sharma, R. Bhandari, K. Sarkar, and V.K. Jindal, Mater. Chem. Phys., 132, 416 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.047

V. Kumar, S. Chandra, and J.K. Singh, Indian J. Phys. 3, 0983 (2017). https://doi.org/10.1007/s12648-017-0983-5

M. Born, and K. Hung, Dynamics Theory of Crystal Lattices, (Oxford University Press, Oxford, (954).

D. Richard, L.A. Errico, and M. Rentira, J. Alloys Compds. 664, 580 (2016). https://doi.org/10.1016 /j.jallcom.2015.12.236

W. Voiget, and Teubner, Lehrbuch Der Kristallphysik Leipzig, Germany, 962 (1928).

A. Reyss, and Z. Angew, Math Mech. 8, 55 (1929).

R. Hill, Proc. Phys. Soc. A, 65, 349 (1952). https://doi.org/10.1088/0370-1298/65/5/307

D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992). https://doi.org/10.1179/mst.1992.8.4.345

L. Kleinman, Phys. Rev. B, 128, 2614 (1962). https://doi.org/10.1103/PhysRev.128.2614

I.N. Frantsevich, F.F. Voronov, and S.A. Bokuta, Handbook in Elastic Constants and Elastic Moduli of Metals and Insulators, (Naukova Dumka, Kiev, 1982). (in Russian)

Y.F. Li, B. Xiao, Y.M. Sun, L. Gao, S.Q. Ma, and D.W. Yi, J. Phys. Chem. Solids, 103, 49 (2017). https://doi.org/10.1016/j.jpcs.2016.12.001

Published
2024-12-08
Cited
How to Cite
Yadav, P., Yadav, D. S., Singh, D., Singh, P., & Verma, A. S. (2024). Elastic Properties of C-Type Lanthanide Sesquioxides. East European Journal of Physics, (4), 227-233. https://doi.org/10.26565/2312-4334-2024-4-22