Elastic Properties of C-Type Lanthanide Sesquioxides
Abstract
In this study, we have presented the solid-state theory of plasma oscillations to investigate the anisotropic elastic properties such as three independent static elastic stiffness constants (Cij: C11, C12 & C44) of C-type Ln2O3 lanthanide solids. The calculated values of the static elastic stiffness constants of Ln2O3 are in excellent agreement with the theoretical results obtained by using ab-initio techniques. The values of elastic stiffness constants (Cij) exhibit a linear relationship when plotted against their plasma energies and lie on a straight line. To further examine the validity of the present estimations on elastic moduli and other parameters of these materials. The mechanical moduli such as bulk modulus (B), shear modulus (G), Young modulus (E), Poisson’s ratio (ν), shear wave constant (Cs), Cauchy pressure (C*), Lame’s coefficient (λ and µ), Kleinman parameter (ξ) Grunesien parameter (γ), Zener anisotropic constant (Z) and Pugh ratio (G/B) of lanthanide solids have also been investigated. For the lanthanide sesquioxide materials, the values of static elastic stiffness constants Cij and elastic moduli were presented for the first time. Unfortunately, in the current study, for many parameters of these materials, experimental results were not found for a comparison with our theoretical predictions. Our estimations agree well with the available experimental data and other theoretical reports.
Downloads
References
K.A. Gschneidner, and L. Erying, Handbook on the Physics and Chemistry of Rare Earths, Vol. 1-40, 202 (1978-2010).
S. Jiang, J. Liu, X.-D. Li, Y.-C. Li, S.-M. He, and J.-C. Zhang, Chin. Phys. Lett. 36(4), 046103 (2019). https://doi.org/10.1088/0256-307X/36/4/046103
J. Łazewski, M. Sternik, P.T. Jochym, J. Kalt, S. Stankov, A.I. Chumakov, J. Göttlicher, et al., Inorg. Chem. 60(13), 9571 (2021). https://doi.org/10.1021 /acs.inorgchem.1c00708
J. Ibanez, J.Á. Sans, V. Cuenca-Gotor, R. Oliva, O. Gomis, P. Rodriguez-Hernandez, A. Munoz, et al., Inorg. Chem. 59(14), 9648 (2020). https://dx.doi.org/10.1021/acs.inorgchem.0c00834
S. Jiang, J. Zhang, L. Wang, C. Lin, S. Yan, J. Liu, A. Li, and R. Tai, AIP Advances, 13, 095018 (2023). https://doi.org/10.1063/5.0164684
S. Jiang, J. Zhang, and S. Yan, AIP Advances, 13, 055308 (2023). https://doi.org/10.1063/5.0140946
Y. He, M. Chen, Y. Jiang, L. Tang, J. Yu, Y. Chen, M. Fu, et al., J. Alloys Compd. 903, 163806 (2022). https://doi.org/10.1016/j.jallcom.2022.163806
L. Erying, Handbook on the Physics and Chemistry of Rare Earths, 3, 337-339 (1997).
V.P. Zhuze, and A.I. Shelykh, Sov. Phys. Semicond. 23, 245 (1989).
H.R. Hoekstra, and K.A. Gingerich, Science, 146, 1163 (1964). https://doi.org/10.1126/science. 146.3648.1163
G. Adachi, and N. Imanaka, Chemical Reviews, 98, 1479 (1998). https://doi.org/10.1021/cr940055h
M. Rahm, and N.V. Skorodumova, Phys. Rev. B80, 104105 (2009). https://doi.org/10.1103 /PhysRevB.80.104105
L. Petit, A. Svane, Z. Szotek, and W.M. Temmerman, Phys. Rev. B, 72, 205118 (2005). https://doi.org/10.1103/PhysRevB.72.205118
N. Hirosaki, S. Ogata, and C. Kocer, J. Alloys Compds. 351, 31 (2003). https://doi.org /10.1016 /S0925-8388(02)01043-5
A. Prokofiev, A.I. Shelykh, and B.T. Melekh, J. Alloys Compds. 242, 41 (1996). https://doi.org/10. 1016/0925-8388(96)02293-1
N. Singh, S.M. Saini, T. Nautiyal, and S. Auluck, J. Appl. Phys. 100, 083525 (2006). https://doi.org /10.1063/1.2353267
A.K. Pathak, and T. Vazhappilly, Phys. Stat. Sol. (b) 255, 1700668 (2018). https://doi.org/10.1002 /pssb.201700668
D. Rechard, E.L. Munoz, M. Renteria, L.A. Errico, A. Svane, and N.E. Christensen, Phys. Rev. B, 88, 165206 (2013). https://doi.org/10.1103/PhysRevB.88.165206
J. Sheng, B.L. Gang, L. Jing, X.W. Sheng, L.X. Dong, L.Y. Chun, T.L. Yun, et al., Chin. Phys. Lett. 26, 076101 (2009). https://doi.org/10.1088/0256-307X/26/7/076101
K.A. Irshad, P. Anees, R. Rajitha, T.R. Ravindran, V. Srihari, S. Kalavathi, and N.V. Chandra Shekar, Journal of Alloys and Compounds 822, 153657 (2020). https://doi.org/10.1016/j.jallcom.2020.153657
A.F. Andreeva, and I.Y. Gilman, Zh. Prikl. Spectrosk, 28, 895 (1978). Ref. no. – AIX-10-431358, EDB-79-100351
M.V. Avrashev, N.D. Todorov, and J. Geshev, J. Appl. Phys. 116, 103508 (2014). https://doi.org/10.1063/1.4894775
S. Jiang, J. Liu, C. Lin, L. Bai, Y. Zhangb, X. Li, Y. Li, et al., Solid State Communications 169, 37 (2013). https://doi.org/10.1016/j.ssc.2013.06.027
V.I. Marchenko, Electronic Structure and Physico Chemical Properties of Refractory Compounds and alloys, 193, (1980).
M. Shafiq, S. Arif, I. Ahmad, S.J. Asadabadi, M. Maqbool, and H.A.R. Aliabad, J. Alloys Compds. 618, 292 (2015). https://doi.org/10.1016/j.jallcom.2014.08.171
H. Jiang, P. Rinke, and M. Scheffler, Phys. Rev. B, 86, 125115 (2012). https://doi.org/10.1103/ PhysRevB.86. 125115
A.S. Verma, Solid State Communication, 149, 1236 (2009). https://doi.org/10.1016/j.ssc.2009.04.011
D.S. Yadav, and S. P. Singh, Phys. Scr. 82, 065705 (2010). https://doi.org/10.1088/0031-8949/82/06/065705
D.S. Yadav and A.S. Verma, Int. J. Mod. Phys. B, 26, 1250020 (2012). https://doi.org/10.1142/ S02179792 12500208
A. S. Verma, S. Sharma, and V.K. Jindal, Mod. Phys. Lett. B, 24, 2511 (2010). https://doi.org /10.1142/ S0217984910024821
R. Bhati, D.S. Yadav, R.C. Gupta, A.S. Verma, Materials Physics and Mechanics, 51(5), 90 (2023). http://dx.doi.org/10.18149/MPM.5152023-9
V. K. Srivastava, Phys. Rev. B, 29(12), 6993 (1984). https://doi.org/10.1103/PhysRevB.29.6993
A.S. Verma, Phys. Scr. 79, 045703 (2009). https://doi.org/10.1088/0031-8949/79/04/045703; A.S. Verma, N. Pal, B.K. Sarkar, R. Bhandari, and V.K. Jindal, Phys. Scr. 85, 015705 (2012). https://doi.org/10.1088/0031-8949/85/01/015705
S.K. Gorai, and P. Mahto, Indian J. Phys., 86(4), 273 (2012). https://doi.org/10.1007/s12648-012-0053-y
D. S. Yadav and D.V. Singh, Phys. Scr., 85, 015701 (2012). https://doi.org/10.1088/0031-8949/85/01/015701
D.S. Yadav, J. Alloy. Compds. 507, 250 (2012). https://doi.org/10.1016/j.jallcom.2012.05.016
D.S. Yadav, J. Mater. Chem. Phys, 3, 6 (2015). https://doi.org/10.12691/jmpc-3-1-2
R. Bhatti, D.S. Yadav, P. Vershney, R.C. Gupta, A.S. Verma, East European Journal of Physics 1, 222 (2023). https://doi.org/10.26565/2312-4334-2023-1-29
D.S. Yadav, and A.S. Verma, Int. J. Mod. Phys. B, 26, 1250020 (2012). https://doi.org/10.1142 /S0217979212500208
N. Yadav, D.S. Yadav, P. Varshney, R.C. Gupta, American Journal of Physics and Applications 11(4), 80 (2023). https://doi.org/10.11648/j.ajpa.20231104.11
A.S. Verma, Materials Science in Semiconductor Processing, 29, 2 (2015). https://doi.org/10.1016 /j.mssp .2014.05.033
H.J. Frost, and M.F. Ashby, Deformation-Mechanism Maps, (Pergamon, Oxford, (1982).
A.S. Verma, S. Sharma, R. Bhandari, K. Sarkar, and V.K. Jindal, Mater. Chem. Phys., 132, 416 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.047
V. Kumar, S. Chandra, and J.K. Singh, Indian J. Phys. 3, 0983 (2017). https://doi.org/10.1007/s12648-017-0983-5
M. Born, and K. Hung, Dynamics Theory of Crystal Lattices, (Oxford University Press, Oxford, (954).
D. Richard, L.A. Errico, and M. Rentira, J. Alloys Compds. 664, 580 (2016). https://doi.org/10.1016 /j.jallcom.2015.12.236
W. Voiget, and Teubner, Lehrbuch Der Kristallphysik Leipzig, Germany, 962 (1928).
A. Reyss, and Z. Angew, Math Mech. 8, 55 (1929).
R. Hill, Proc. Phys. Soc. A, 65, 349 (1952). https://doi.org/10.1088/0370-1298/65/5/307
D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992). https://doi.org/10.1179/mst.1992.8.4.345
L. Kleinman, Phys. Rev. B, 128, 2614 (1962). https://doi.org/10.1103/PhysRev.128.2614
I.N. Frantsevich, F.F. Voronov, and S.A. Bokuta, Handbook in Elastic Constants and Elastic Moduli of Metals and Insulators, (Naukova Dumka, Kiev, 1982). (in Russian)
Y.F. Li, B. Xiao, Y.M. Sun, L. Gao, S.Q. Ma, and D.W. Yi, J. Phys. Chem. Solids, 103, 49 (2017). https://doi.org/10.1016/j.jpcs.2016.12.001
Copyright (c) 2024 Pooja Yadav, Dheerendra Singh Yadav, Dharmvir Singh, Pravesh Singh, Ajay Singh Verma
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).