Spectral and Temporal Properties of CXOUJ122956.7+075728 (ULX-1), an Ultraluminous X-Ray Source in NGC 4472
Abstract
This report presents a comprehensive analysis of the spectral and temporal characteristics of a highly significant Ultraluminous X-ray Source (ULX) designated as CXOUJ122956.7+075728 (ULX-1) situated in the elliptical galaxy NGC 4472 within the Virgo cluster. ULX-1 exhibits a soft spectral state, featuring a cool accretion disk component with kTin ∼ 0.15 keV, accompanied by a power-law tail displaying a steep power-law photon index, Γ ∼ 2.8. The spectral findings strongly support an estimated black hole mass of approximately 3.30 × 103 M⊙ under an isotropic emission model, and around 1.47 × 103 M⊙ in an extreme beaming scenario. Temporally, ULX-1 displays significant variability on time scales of 0.5, 1, and 2 ks, suggesting the possibility of instabilities within the accretion disk contributing to this behavior. However, despite this temporal variability, the power spectra analysis of this soft ULX reveals no signatures of pulsations, distinguishing it from certain pulsating ULXs (PULXs) typically associated with neutron stars. This absence of pulsations in ULX-1 further underscores its unique spectral and temporal characteristics within the broader context of ULX phenomena.
Downloads
References
P. Kaaret, H. Feng, and T. Roberts, ”Ultraluminous X-ray sources,” Annu. Rev. Astron. Astrophys. 55, 303-341 (2017). https://doi.org/10.1146/annurev-astro-091916-055259.
J.M. Miller, A.C. Fabian, and M.C. Miller, ”A Comparison of Intermediate-Mass Black Hole Candidate Ultraluminous X-Ray Sources and Stellar-Mass Black Holes,” ApJ, 614, L117 (2004). https://doi.org/10.1086/425316
M.C. Miller, and Colbert E.J.M., ”Intermediate-mass black holes,” Int. J. Mod. Phys. D, 13(1), 1-64 (2004). https://doi.org/10.1142/S0218271804004426
E.J. Colbert, and R.F. Mushotzky, Bulletin of the AAS, 31, 873 (1999).
O. Godet, B. Plazolles, T. Kawaguchi, J. Lasota, D. Barret, S. Farrell, V. Braito, et al., ”Investigating slim disk solutions for HLX-1 in ESO 243-49,” Astrophys. J. 752, 34 (2012). https://doi.org/10.1088/0004-637X/752/1/34
A. Singha, and A. Devi, ”Bimodal distribution of the hyperluminous X-ray sources,” Acta Astron. 69, 339-360 (2019). https://doi.org/10.32023/0001-5237/69.4.3
R. Abbott, et al., (LIGO Scientific Collaboration and Virgo Collaboration), ”GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙,” Phys. Rev. Lett. 125, 101102 (2020). https://doi.org/10.1103/PhysRevLett.125.101102
T. Sanatombi, A.S. Devi, and K.Y. Singh, ”Spectral study of the Ultraluminous X-ray sources in M51 at different epochs of Chandra observation,” Chinese Journal of Physics,83, 579–598 (2023). https://doi.org/10.1016/j.cjph.2023.04.010
A. Devi, R. Misra, K. Shanthi, and K. Singh, ”The spectral and temporal properties of an ultraluminous X-ray source in NGC 6946,” Astrophys. J. 682, 218-222 (2008). https://doi.org/10.1086/589710
H.P. Earnshaw, T.P. Roberts, M.J. Middleton, D.J. Walton, and S. Mateoset, ”A new, clean catalogue of extragalactic non-nuclear X-ray sources in nearby galaxies,” Mon. Not. R. Astron. Soc. 483, 5554–5573 (2019). https://doi.org/10.1093/mnras/sty3403
D.J.Walton, A.D.A. Mackenzie, H. Gully, N.R. Patel, T.P. Roberts, H.P. Earnshaw, and S. Mateos, ”A multimission catalogue of ultraluminous X-ray source candidates,” MNRAS, 509(2), 1587–1604 (2022). https://doi.org/10.1093/mnras/stab3001
J. Gladstone, T. Roberts, and C. Done, ”The ultraluminous state,” Mon. Not. R. Astron. Soc. 397, 1836-1851 (2009). https://doi.org/10.1111/j.1365-2966.2009.15123.x
M.J. Middleton, A.D. Sutton, T.P. Roberts, F.E. Jackson, and C. Done, ”The missing link: a low-mass X-ray binary in M31 seen as an ultraluminous X-ray source,” MNRAS, 420, 2969 (2012). https://doi.org/10.1111/j.1365-2966.2011.20145.x
A. Sutton, T. Roberts, and M. Middleton, ”The ultraluminous state revisited: Fractional variability and spectral shape as diagnostics of super-Eddington accretion,” Mon. Not. R. Astron. Soc. 435, 1758-1775 (2013). https://doi.org/10.1093/mnras/stt1419
E.S. Mukherjee, D.J. Walton, M. Bachetti, F.A. Harrison, D. Barret, E. Bellm, S.E. Boggs, F.E. Christensen, et al., ”A Hard X-Ray Study of the Ultraluminous X-Rar source NGC 5204 X-1 with NuSTAR and XMM-NEWTON,” Astrophys. J. 808, 64 (2015). https://doi.org/10.1088/0004-637X/808/1/64
M. Middleton, L. Heil, F. Pintore, D.Walton, and T. Roberts, ”A spectral-timing model for ULXs in the supercritical regime,” Mon. Not. R. Astron. Soc. 447, 3243-3263 (2015). https://doi.org/10.1093/mnras/tu2644
T. Ghosh, and V. Rana, ”Super-Eddington accretion on to a stellar mass ultraluminous X-ray source NGC 4190 ULX1,” MNRAS, 504, 974–982 (2021). https://doi.org/10.1093/mnras/stab774
A. G´urpide, O. Godet, F. Koliopanos, N.Webb, and J.F. Olive, ”Long-term X-ray spectral evolution of ultraluminous X-ray sources: implications on the accretion flow geometry and the nature of the accretor,” A&A, 649, A104, (2021). https://doi.org/10.1051/0004-6361/202039572
V. Jithesh, ”Spectral and temporal properties of ultra-luminous X-ray source NGC 55 ULX1,” MNRAS, 509, 5166–5178 (2022). https://doi.org/10.1093/mnras/stab3307
C. Pinto, W. Alston, R. Soria, M.J. Middleton, D.J. Walton, A.D. Sutton, A.C. Fabian, et al., ”From ultraluminous X-ray sources to ultraluminous supersoft sources: NGC 55 ULX, the missing link,” MNRAS, 468(3), 2865–2883 (2017). https://doi.org/10.1093/mnras/stx641
C. Pinto, R. Soria, D. Walton, A. D’A`ı, F. Pintore, P. Kosec, W.N. Alston, et al., ”XMM-Newton campaign on the ultraluminous X-ray source NGC 247 ULX-1: outflows,” Mon. Not. R. Astron. Soc. 505 5058 (2021). https://doi.org/10.1093/mnras/stab1648
M. Bachetti, F. Harrison, D. Walton, B. Grefenstette, D. Chakrabarty, F. F¨urst, D. Barret, A. Beloborodov, et al., ”An ultraluminous X-ray source powered by an accreting neutron star,” Nature, 514, 202-212 (2014). https://doi.org/10.1038/nature13791
S. Carpano, F. Haberl, C. Maitra, and G. Vasilopoulos, ”Discovery of pulsations from NGC 300 ULX1and its fast period evolution,” Mon. Not. R. Astron. Soc. 476(1), L45-L49 (2018). https://doi.org/10.1093/mnrasl/sly030
R. Sathyaprakash, T.P. Roberts, D.J. Walton, F. Fuerst, M. Bachetti, C. Pinto, W.N. Alston, et al., ”The discovery of weak coherent pulsations in the ultrluminous X-ray source NGC1313 X-2,” Mon. Not. R. Astron. Soc. 488, L35-L40 (2019). https://doi.org/10.1093/mnrasl/slz086
R. Castillo, G. Israel, A. Belfiore, F. Bernardini, P. Esposito, F. Pintore, A. De Luca, et al., ”Discovery of a 2.8 s Pulsar in a 2 Day orbit high-mass X-ray binary powering the ultraluminous X-ray source ULX-7 in M51,” Astrophys. J. 895, 60 (2020). https://doi.org/10.3847/1538-4357/ab8a44
V. Doroshenko, et al., ”First characterization of Swift J1845.7-0037 with Nustar,” Astron. & Astroph. 634, A89 (2020). https://doi.org/10.1051/0004-6361/201937036
V. Jithesh, C. Anjana, and R. Misra, ”Broadband X-ray spectral study of ultraluminous X-ray source M81 X–6,” MNRAS, 494, 4026 (2020). https://doi.org/10.1093/mnras/staa976
M.I. Krauss, R.E. Kilgard, M.R. Garcia, T.P. Roberts, and A.H. Prestwich, ”M74 X-1 (CXOU J013651.1+154547): An Extremely Variable Ultraluminous X-Ray Source,” ApJ, 630, 228 (2005). https://doi.org/10.1086/431784
T.D. Joseph, T.J. Maccarone, R.P. Kraft, and G.R. Sivakoffet, ”A deeper look at the X-ray point source population of NGC 4472 ,” MNRAS, 470, 4133–4144 (2017). https://doi.org/10.1093/mnras/stx1383
L.M. Macri, J.P. Huchra, P.B. Stetson, N.A. Silbermann, W.L. Freedman, R.C. Kennicutt, J.R. Mould, et al., ”The Extragalactic Distance Scale Key Project. XVIII. The Discovery of Cepheids and a New Distance to NGC 4535 Using the Hubble Space Telescope,” ApJ, 521, 155 (1999). https://doi.org/10.1086/307541
A. Devi, and K. Singh, ”Discovery of an ultra-luminous X-ray source candidate, ULX (X-8) in NGC 3384 with Chandra,” Astrophys. Space Sci. 354, 535-540 (2014). https://doi.org/10.1007/s10509-014-2091-8
A.R. King, M.B. Davies, M.J. Ward, G. Fabbiano, and M. Elvis, ”Ultraluminous X-ray Sources in External Galaxies,” Astrophys. J. 552, L109–L112 (2001). https://doi.org/10.1086/320343
R. Misra, and K. Sriram, ”Flux enhancement in the inner region of a geometrically and optically thick accretion disk,” Astrophys. J. 584, 981-984 (2003). https://doi.org/10.1086/345742
Copyright (c) 2024 A. Senorita Devi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).