Nitrogen Adsorption on Double-Walled Carbon Nanotube at Different Temperatures: Mechanistic Insights from Molecular Dynamics Simulations

  • Utkir B. Uljaev Arifov Institute of Ion‐Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
  • Shakhnozaxon A. Muminova Arifov Institute of Ion‐Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
  • Ishmumin D. Yadgarov Arifov Institute of Ion‐Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
Keywords: Double-walled carbon nanotube, Nitrogen adsorption, Reactive molecular dynamics


Nitrogen-adsorbing carbon nanotubes have received considerable attention in the field of materials science due to their unique properties and potential applications. In particular, nitrogen-adsorbed double-walled carbon nanotubes (DWNTs) can exhibit a wide range of tunable electronic and optoelectronic properties. In this study, the effect of different temperatures (i.e., 300, 600, and 900 K) of DWNT on nitrogen adsorption is investigated through molecular dynamics simulations using the ReaxFF potential. The simulation results show a good nitrogen storage capacity of DWNT, particularly at 600 K, reaching a maximum gravimetric density of 12.4 wt%. This study contributes to a better understanding of the mechanisms governing nitrogen adsorption onto DWNTs at different temperatures.


Download data is not yet available.


S. Iijima, “Carbon nanotubes: past, present, and future”, Phys. B Condens. Matter, 323(1-4), 1–5 (2002).

M. Soto, et al., “Effect of interwall interaction on the electronic structure of double-walled carbon nanotubes”, Nanotechnology, 26(16), 165201 (2015).

Q. Wei, X. Tong, G. Zhang, J. Qiao, Q. Gong, and S. Sun, “Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions”, Catalysts, 5(3), 1574–1602 (2015).

E.N. Nxumalo, and N.J. Coville, “Nitrogen Doped Carbon Nanotubes from Organometallic Compounds: A Review”, Materials, 3(3), 2141–2171 (2010).

F. Shojaie, “N2 adsorption on the inside and outside the single-walled carbon nanotubes by density functional theory study”, Pramana, 90(1), 4 (2018).

M. Jamshidi, M. Razmara, B. Nikfar, and M. Amiri, “First principles study of a heavily nitrogen-doped (10,0) carbon nanotube”, Phys. E Low-Dimens. Syst. Nanostructures, 103, 201–207 (2018).

C. Zhao, Y. Lu, H. Liu, and L. Chen, “First-principles computational investigation of nitrogen-doped carbon nanotubes as anode materials for lithium-ion and potassium-ion batteries”, RSC Adv. 9(30), 17299–17307 (2019).

S.-P. Ju, et al., “A molecular dynamics study of the mechanical properties of a double-walled carbon nanocoil”, Comput. Mater. Sci. 82, 92-99 (2014).

V. Zólyomi, et al., “Intershell interaction in double walled carbon nanotubes: Charge transfer and orbital mixing”, Phys. Rev. B, 77(24), 245403 (2008).

T. Koretsune, and S. Saito, “Electronic structures and three-dimensional effects of boron-doped carbon nanotubes”, Sci. Technol. Adv. Mater. 9(4), 044203 (2008).

K.-Y. Chun, H.S. Lee, and C.J. Lee, “Nitrogen doping effects on the structure behavior and the field emission performance of double-walled carbon nanotubes”, Carbon, 47(1), 169–177 (2009).

S.H. De Paoli Lacerda, J. Semberova, K. Holada, O. Simakova, S. Hudson, and J. Simak, “Carbon Nanotubes Activate Store-Operated Calcium Entry in Human Blood Platelets”, ACS Nano, 5(7), 5808–5813 (2011).

H. Wu, D. Wexler, and H. Liu, “Effects of different palladium content loading on the hydrogen storage capacity of double-walled carbon nanotubes”, Int. J. Hydrog. Energy, 37(7), 5686–5690 (2012).

D. Xia et al., “Extracting the inner wall from nested double-walled carbon nanotube by platinum nanowire: molecular dynamics simulations”, RSC Adv. 7(63), 39480–39489 (2017).

J.D. Correa, E. Florez, and M.E. Mora-Ramos, “Ab initio study of hydrogen chemisorption in nitrogen-doped carbon nanotubes”, Phys. Chem. Chem. Phys. 18(36), 25663–25670 (2016).

H. Soleymanabadi, and J. Kakemam, “A DFT study of H2 adsorption on functionalized carbon nanotubes”, Phys. E Low-Dimens. Syst. Nanostructures, 54, 115–117 (2013).

R. Kronberg, H. Lappalainen, and K. Laasonen, “Hydrogen Adsorption on Defective Nitrogen-Doped Carbon Nanotubes Explained via Machine Learning Augmented DFT Calculations and Game-Theoretic Feature Attributions”, J. Phys. Chem. C, 125(29), 15918–15933 (2021).

Y. Fujimoto, and S. Saito, “Structure and stability of hydrogen atom adsorbed on nitrogen-doped carbon nanotubes”, J. Phys. Conf. Ser. 302, 012006 (2011).

M. Terrones, A. Jorio, M. Endo, A.M. Rao, Y.A. Kim, T. Hayashi, H. Terrones, et al., “New direction in nanotube science”, Mater. Today, 7(10), 30–45 (2004).

M. Glerup, M. Castignolles, M. Holzinger, G. Hug, A. Loiseau, and P. Bernier, “Synthesis of highly nitrogen-doped multi-walled carbon nanotubes”, Chem. Commun. 20, 2542 (2003).

B.J. Alder, and T.E. Wainwright, “Phase Transition for a Hard Sphere System”, J. Chem. Phys. 27(5), 1208–1209 (1957).

A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. Veld, et al., “LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales”, Comput. Phys. Commun. 271, 108171 (2022).

K. Chenoweth, A. C. T. Van Duin, and W. A. Goddard, “ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation”, J. Phys. Chem. A, vol. 112, no. 5, pp. 1040–1053, 2008,

G. Chen, et al., “Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular Capacitors”, Phys. Rev. Lett. 90(25), 257403 (2003).

H.J.C. Berendsen, J.P.M. Postma, W.F. Van Gunsteren, A. DiNola, and J.R. Haak, “Molecular dynamics with coupling to an external bath”, J. Chem. Phys. 81(8), 3684–3690 (1984).

J. Sun, P. Liu, M. Wang, and J. Liu, “Molecular Dynamics Simulations of Melting Iron Nanoparticles with/without Defects Using a Reaxff Reactive Force Field”, Sci. Rep. 10(1), 3408 (2020).

G. Bussi, D. Donadio, and M. Parrinello, “Canonical sampling through velocity rescaling”, J. Chem. Phys. 126(1), 014101 (2007).

D. Ugarte, A. Châtelain, and W.A. De Heer, “Nanocapillarity and Chemistry in Carbon Nanotubes”, Science, 274(5294), 1897 1899 (1996).

P. Ayala, A. Grüneis, T. Gemming, D. Grimm, C. Kramberger, M.H. Rümmeli, F.L. Freire Jr., et al., “Tailoring N-Doped Single and Double Wall Carbon Nanotubes from a Nondiluted Carbon/Nitrogen Feedstock”, J. Phys. Chem. C, 111(7), 2879–2884 (2007).

W. Su, X. Li, L. Li, D. Yang, F. Wang, X. Wei, W. Zhou, et al., “Chirality-dependent electrical transport properties of carbon nanotubes obtained by experimental measurement”, Nat. Commun. 14(1), 1672 (2023).

U. Khalilov, A. Bogaerts, B. Xu, T. Kato, T. Kaneko, and E. C. Neyts, “How the alignment of adsorbed ortho H pairs determines the onset of selective carbon nanotube etching”, Nanoscale, 9(4), 1653–1661 (2017).

X. Sha, B. Jackson, and D. Lemoine, “Quantum studies of Eley–Rideal reactions between H atoms on a graphite surface”, J. Chem. Phys. 116(16), 7158–7169 (2002).

T. Zecho, A. Güttler, X. Sha, D. Lemoine, B. Jackson, and J. Küppers, “Abstraction of D chemisorbed on graphite (0001) with gaseous H atoms”, Chem. Phys. Lett. 366(1-2), 188–195 (2002).

R. Czerw, M. Terrones, J.-C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, et al., “Identification of Electron Donor States in N-Doped Carbon Nanotubes”, Nano Lett. 1(9), 457–460 (2001).

How to Cite
Uljaev, U. B., Muminova, S. A., & Yadgarov, I. D. (2024). Nitrogen Adsorption on Double-Walled Carbon Nanotube at Different Temperatures: Mechanistic Insights from Molecular Dynamics Simulations. East European Journal of Physics, (1), 361-365.