Axial Structure of Gas Discharge Sustained by the Eigen Dipolar Wave of The Metal Waveguide with Varying Radius Filled by Magnetized Nonuniform Plasma

  • Volodymyr Olefir V.N. Karazin Kharkiv National University, Kharkiv, Ukraine; National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine https://orcid.org/0000-0002-8022-2556
  • Oleksandr Sporov V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-4610-9656
  • Mykola Azarenkov V.N. Karazin Kharkiv National University, Kharkiv, Ukraine; National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine https://orcid.org/0000-0002-4019-4933
Keywords: Gas discharge, Plasma-metal waveguide, Dipolar eigen wave, Phase and attenuation properties, Zakrzewski criterion

Abstract

The article presents the results of the theoretical study of the plasma density axial distribution in a stationary gas discharge sustained by the eigen dipolar wave that propagates in a long cylindrical plasma-metal structure. The discharge structure consists of a column of magnetized non-uniform plasma placed in the metal waveguide of variable radius. The study of the gas discharge is carried out within the framework of the electrodynamic model, in which the main attention is paid to the electrodynamic part of the model. To describe the processes that take place in plasma, the model equations are used. The influence of the metal waveguide inhomogeneity along the structure and the plasma density radial non-uniformity on the phase characteristics of the dipolar wave, its spatial attenuation, the field components radial distribution, the axial distribution of the plasma density sustained by this mode are determined. It is also analysed the condition for the discharge stability and find the regions, where dipolar mode can sustain the stable discharge. The obtained results can be useful for various technological applications.

Downloads

Download data is not yet available.

References

I. Zhelyazkov, and V. Atanassov, Physics Reports, 255(2-3), 79 (1995). https://doi.org/10.1016/0370-1573(94)00092-H.

H. Schluter, and A. Shivarova, Physics Reports, 443(4-6), 4-6, 121 (2007). https://doi.org/10.1016/j.physrep.2006.12.006.

E. Benova, P. Marinova, R. Tafradjiiska-Hadjiolova, Z. Sabit, D. Bakalov, N. Valchev, L. Traikov, et al., Appl. Sci. 12, 969 (2022). https://doi.org/10.3390/app12030969

M. S. Kovacevic, L. Kuzmanovic, M.M. Milosevic, and A. Djordjevich, Physics of Plasmas, 28(2), (2021). https://doi.org/10.1063/5.0035035

C.M. Ferreira, J. of Phys. D: Appl. Phys. 16(9), 1673 (1983). https://doi.org/10.1088/0022-3727/16/9/013.

M. Moisan, and Z. Zakrzewski, J. of Phys. D: Appl. Phys. 24(7), 1025 (1991). https://doi.org/10.1088/0022-3727/24/7/001.

J. Wolinska-Szatkowska, J. of Phys. D: Appl. Phys. 20, 977 (1987). https://doi.org/10.1088/0022-3727/20/7/024.

N.A. Azarenkov, V.P. Olefir, and A.E. Sporov, Problems of Atomic Science and Technology. Series ≪Plasma Physics≫, 25(6), 113 (2018). https://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_6/article_2018_6_113.pdf.

N.A. Azarenkov, V.P. Olefir, and A.E. Sporov, Problems of Atomic Science and Technology. Series “Plasma Physics”, 130(6), 69 (2020). http://dx.doi.org/10.46813/2020-130-069

N.A. Azarenkov, V.P. Olefir, and A.E. Sporov, Problems of Atomic Science and Technology. Series “Plasma Physics”, 143(1) 1, 98 (2023). http://dx.doi.org/10.46813/2023-143-098

D. Gary Swanson, Plasma Waves, 2nd Edition, (IOP Publishing Ltd, Bristol and Philadelphia, 2003).

G.G. Lister, and T.R. Robinson, J. of Phys. D: Appl. Phys. 24(11), 1993 (1991). https://doi.org/10.1088/0022-3727/24/11/013.

Published
2023-12-02
Cited
How to Cite
Olefir, V., Sporov, O., & Azarenkov, M. (2023). Axial Structure of Gas Discharge Sustained by the Eigen Dipolar Wave of The Metal Waveguide with Varying Radius Filled by Magnetized Nonuniform Plasma. East European Journal of Physics, (4), 336-346. https://doi.org/10.26565/2312-4334-2023-4-44

Most read articles by the same author(s)