DFT Studies on Electronic, Elastic, Thermoelectric and Optical Properties of New Half-Heusler XRhZ (X = V, Nb and Z = Si, Ge) Semiconductors

  • Bendehiba Sid Ahmed Technology and Solids Properties Laboratory, University of Mostaganem (UMAB), Algeria
  • Besbes Anissa Technology and Solids Properties Laboratory, University of Mostaganem (UMAB), Algeria
  • Djelti Radouan Technology and Solids Properties Laboratory, University of Mostaganem (UMAB), Algeria https://orcid.org/0000-0002-0762-5818
  • Najwa Al Bouzieh Physics Department, College of Science, United Arab Emirates University (UAEU), Al Ain, UAE https://orcid.org/0000-0003-4603-9982
  • I. Kars Durukan Department of Physics, Faculty of Science, Gazi University, Ankara, Turkey https://orcid.org/0000-0001-5697-0530
  • Noureddine Amrane Physics Department, College of Science, United Arab Emirates University (UAEU), Al Ain, UAE
Keywords: Half-Heusler alloys, Semiconductor, Elastic properties, Seebeck coefficient, Merit factor, Absorption coefficient, Reflectivity


Density functional theory is used to explore the physical properties of the new half-Heusler alloys XRhZ (X =V, Nb and Z = Si, Ge). The exchange-correlation effects were treated by the TB-mBJ potential. The four studied compounds are nonmagnetic semiconductor with an indirect band gap. The formation enthalpy, cohesive energy and phonon band structures demonstrated that these semiconductors are structurally and dynamically stable. It was predicted by the elastic study that the XRhZ compounds (X = V, Nb and Z = Si, Ge) have stable mechanical properties, they possess an anisotropic character and reveal the ductile nature with a B/G ratio >1.75. The optical results show an interesting photocatalytic potential for the NbRhSi and NbRhGe semiconductors; they exhibit a high absorption coefficient in the visible domain, which is around 112.104 cm-1. For energies greater than 10 eV (UV domain), the refractive index is less than one. The thermoelectric results confirmed that the XRhZ (X=V, Nb and Z=Si, Ge) compounds are very attractive for thermoelectric devices working in large temperature range including ambient temperature.


Download data is not yet available.


C. Fu, T. Zhu, Y. Liu, et al., “Band engineering of high-performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1,” Energy Environ. Sci. 8, 216-220 (2015). https://doi.org/10.1039/C4EE03042G

G.T. Wang, and J.H. Wei, “Topological phase transition in half-Heusler compounds HfIrX (X = As, Sb, Bi),” Comput. Mater. Sci. 124, 311 (2016). https://doi.org/10.1016/j.commatsci.2016.08.005

S. Singh, S.W. D'Souza, J. Nayak, et al., “Effect of platinum substitution on the structural and magnetic properties of Ni2MnGa ferromagnetic shape memory alloy,” Phys. Rev. B Condens. Matter, 93, 134102 (2016). https://doi.org/10.1103/PhysRevB.93.134102

A. Besbes, R. Djelti, B. Bestani, and O. Akel, “First-principles study of structural, electronic, thermodynamic, and thermoelectric properties of a new ternary half-Heusler alloy PdZrGe,” Chinese Journal of Physics 56, 2926–2936 (2018). https://doi.org/10.1016/j.cjph.2018.09.027

A. Roy, J.W. Bennett, K.M. Rabe, and D. Vanderbilt, “Half-heusler semiconductors as piezoelectrics,” Phys. Rev. Lett. 109, 037602 (2012). https://doi.org/10.1103/PhysRevLett.109.037602

Y. Gupta, M.M. Sinha, and S.S. Verma, “Investigations of mechanical and thermoelectric properties of AlNiP novel half-Heusler alloy,” Mater. Chem. Phys. 265, 124518 (2021). https://doi.org/10.1016/j.matchemphys.2021.124518

J. Nagura, T.M. Ashani, P.O. Adebambo, F. Ayedun, and G.A. Adebayo, “Thermoelectric and mechanical properties of XHfSn (X = Ni, Pd and Pt) semiconducting half-Heusler alloys: a first-principles study,” Comput. Condens. Matter, 26, e00539 (2021). https://doi.org/10.1016/j.cocom.2021.e00539

Vikram, J. Kangsabanik, Enamullah, and A. Alam, “Bismuth based half-Heusler alloys with giant thermoelectric figures of merit,” J. Mater. Chem. A, 5, 6131-6139 (2017). https://doi.org/10.1039/C7TA00920H

C.H. Hordequin, E. Lelievre-Berna, and J. Pierre, “Magnetization density in the half-metallic ferromagnet NiMnSb,” Phys. B, 234 236, 602-604 (1997). https://doi.org/10.1016/S0921-4526(96)01207-0

J. Tobola, J. Pierre, S. Kaprzyk, R.V. Skolozdra, and M.A. Kouacou, “Crossover from semiconductor to magnetic metal in semi-Heusler phases as a function of valence electron concentration,” J. Phys.: Condens. Matter, 10, 1013 (1998). https://doi.org/10.1088/0953-8984/10/5/011

K. Kaczmarska, J. Pierre, J. Beille, J. Tobola, R.V. Skolozdra, and G.A. Melnik, “Physical properties of the weak itinerant ferromagnet CoVSb and related semi-Heusler compounds,” J. Magn. Magn. Mater. 187, 210 (1998). https://doi.org/10.1016/S0304-8853(98)00125-5

S. Anand, K. Xia, I.V. Hegde, U. Aydemir, V. Kocevski, T. Zhu, C. Wolverton, and G.J. Snyder, “A valence balanced rule for discovery of 18-electron half-Heuslers with defects,” Energy Environ. Sci. 11(6), 1480–1488 (2018). https://doi.org/10.1039/C8EE00306H

J. Yang, H. Li, T. Wu, W. Zhang, L. Chen, and J. Yang, “Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties,” Adv. Funct. Mater. 18(19), 2880–2888 (2008). https://doi.org/10.1002/adfm.200701369

K. Bartholomé, B. Balke, D. Zuckermann, M. Köhne, M. Müller, K. Tarantik, and J. König, “Thermoelectric modules based on half-Heusler materials produced in large quantities,” J. Electronic Mater. 43(6), 1775–1781 (2014). https://doi.org/10.1007/s11664-013-2863-x

O.M. Abid, S. Menouer, A. Yakoubi, H. Khachai, S.B. Omran, G. Murtaza, D. Prakash, et al., “Structural, electronic, elastic, thermoelectric and thermodynamic properties of the NbMSb half heusler (M=Fe, Ru, Os) compounds with first principle calculations,” Superlattices Microstruct. 93, 171–185 (2016). https://doi.org/10.1016/j.spmi.2016.01.001

K. Bencherif, A. Yakoubi, N. Della, O.M. Abid, H. Khachai, R. Ahmed, R. Khenata, et al., “First principles investigation of the elastic, optoelectronic and thermal properties of XRuSb:(X= V, Nb, Ta) semi-Heusler compounds using the mBJ exchange potential,” J. Electron. Mater. 45, 3479–3490 (2016). https://doi.org/10.1007/s11664-016-4488-3

P.K. Kamlesh, R. Agrawal, U. Rani, and A.S. Verma, “Comprehensive ab-initio calculations of AlNiX (X = P, As and Sb) half-Heusler compounds: Stabilities and applications as green energy resources,” Materials Chemistry and Physics, 275, 125233 (2022). https://doi.org/10.1016/j.matchemphys.2021.125233

Y. Wang, J. Li, J. Wang, F. He, X. Xu, Y. Liu, and F. Yin, “Prediction of NbXGe (X = Rh, Ir) half‑Heusler semiconducting compounds with promising thermoelectric property using 18‑electron rule,” Applied Physics A, 128, 44 (2022). https://doi.org/10.1007/s00339-021-05193-2

D.M. Hoat, “Electronic structure and thermoelectric properties of Ta-based half-Heusler compounds with 18 valence electrons,” Computational Materials Science, 159, 470–477 (2019). https://doi.org/10.1016/j.commatsci.2018.12.039

J. Wei, and G. Wang, “Thermoelectric and optical properties of half-Heusler compound TaCoSn: A first-principle study,” Journal of Alloys and Compounds, 757, 118-123 (2018). https://doi.org/10.1016/j.jallcom.2018.05.037

W. Silpawilawan, Sora-at Tanuslip, Y. Ohishi, H. Muta, and K. Kurosaki, “Enhancement of thermoelectric figure of merit of p-type Nb0.9Ti0.1FeSb half-Heusler compound by nanostructuring,” Phys. status solidi a, 217(23), 2000419 (2020). https://doi.org/10.1002/pssa.202000419

P. Blaha, et al., WIEN2K, in: An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties, edited by K. Schwarz, (Vienna University of Technology, Austria, 2001).

P. Hohenberg, and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. 136(3B), B864 (1964). https://doi.org/10.1103/PhysRev.136.B864

D. Singh, Planewaves, Pseudopotentials and the LAPW Method, (Kluwer Academic Publishers, Boston, Dortrecht, London, 1994).

J.P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

Z. Wu, and R.E. Cohen, “More accurate generalized gradient approximation for solids,” Phys. Rev. B, 73, 235116 (2006). https://doi.org/10.1103/PhysRevB.73.235116

F. Tran, and P. Blaha, “Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential,” J. Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401

H.J. Monkhorst, and J.D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

P. Allen, “Boltzmann Theory and Resistivity of Metals,” in: Kluwer International Series in Engineering and Computer Science, (1996). pp. 219–250. https://doi.org/10.1007/978-1-4613-0461-6_17

G.K. Madsen, D.J. Singh, “BoltzTraP. A code for calculating band-structure dependent quantities,” Comput. Phys. Commun. 175(1), 67-71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors, (John Wiley & Sons, 2009). https://doi.org/10.1002/9780470744383

J. Sun, H.T. Wang, and N.B. Ming, “Optical properties of heterodiamond B2CN using first-principles calculations,” Appl. Phys. Lett. 84, 4544 (2004). https://doi.org/10.1063/1.1758781

J.M. Hu, S.P. Huang, Z. Xie, H. Hu, and W.D. Cheng, “First-principles study of the elastic and optical properties of the pseudocubic Si3As4, Ge3As4 and Sn3As4,” J. Phys.: Condens. Matter, 19, 496215 (2007). https://doi.org/10.1088/0953-8984/19/49/496215

K. Momma, and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 1272-1276 (2011). https://doi.org/10.1107/S0021889811038970

T. Graf, C. Felser, and S. Parkin, “Simple rules for the understanding of Heusler compounds,” Prog. Solid State Chem. 39, 1–50 (2011). https://doi.org/10.1016/j.progsolidstchem.2011.02.001

P.O. Adebambo, R.O. Agbaoye, A.A. Musari, B.I. Adetunji, and G.A. Adebayo, “Band structure, thermoelectric properties, effective mass and electronic fitness function of two newly discovered 18 valence electrons stable half-Heusler TaX(X=Co,Ir)Sn semiconductors: A density functional theory approach,” Solid State Sciences, 100, 106096 (2020). https://doi.org/10.1016/j.solidstatesciences.2019.106096

C. Coban, Y.O. Ciftci, and K. Colakoglu, “Structural, electronic, elastic, optical, and vibrational properties of HfXSb (X = Co, Rh, Ru) half-Heusler compounds: an ab initio study,” Indian J. Phys. 90(11), 1233–1241 (2016). https://doi.org/10.1007/s12648-016-0873-2

A. Amudhavalli, R. Rajeswarapalanichamy, and K. Iyakutti, “Half-metallic ferromagnetism in Ni based half Heusler alloys,” Comput. Mater. Sci. 148, 87–103 (2018). https://doi.org/10.1016/j.commatsci.2018.02.026

G.K. Gueorguiev, J. Neidhardt, S. Stafström, and L. Hultman, “First-principles calculations on the role of CN precursors for the formation of fullerene-like carbon nitride,” Chem. Phys. Lett. 401, 288 (2005). https://doi.org/10.1016/j.cplett.2004.11.060

A. Togo, and I. Tanaka, “First principles phonon calculations in materials science,” Scripta Mater. 108, 1–5 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.021

M. Hong, Y. Wang, T. Feng, t al., “Strong Phonon–Phonon Interactions Securing Extraordinary Thermoelectric Ge1–xSbxTe with Zn-Alloying-Induced Band Alignment,” J. Am. Chem. Soc. 141(4), 1742–1748 (2019). https://doi.org/10.1021/jacs.8b12624

I. Galanakis, P. Mavropoulos, and P.H. Dederichs, “Electronic structure and Slater–Pauling behaviour in half-metallic Heusler alloys calculated from first principles,” J. Phys. D. Appl. Phys. 39, 765–775 (2006). https://doi.org/10.1088/0022-3727/39/5/S01

I.K.Durukan, and Y.O. Ciftci, “First-principles calculations of vibrational and optical properties of half- Heusler NaScSi,” Indian J. Phys. 95(11), 2303 (2020). https://doi.org/10.1007/s12648-020-01887-0

J.K. Satyam, and S.M. Saini, “Narrow gap electronic structure and thermoelectric performance of p-type ErMSb (M = Ni, Pd) half Heusler compounds,” Physica B, 631, 413709 (2022). https://doi.org/10.1016/j.physb.2022.413709

J. Hornstra, and W. Bartels, “Determination of the lattice constant of epitaxial layers of III-V compounds,” J. Cryst. Growth, 44, 513–517 (1978). https://doi.org/10.1016/0022-0248(78)90292-0

S. Wang, and H. Ye, “First-principles study on elastic properties and phase stability of III–V compounds,” Phys. Status Solidi, 240, 45 (2003). https://doi.org/10.1002/pssb.200301861

M. Born, and K. Huang, Dynamics Theory of Crystal Lattices, (Oxford University Press, 1954).

A. Iyigor, S. Al, and N. Arikan, “Density functional theory investigation on structural, mechanical, electronic and vibrational properties of Heusler alloys AlXIr2 (X = Co, Cr, Cu, Fe and Zn),” Chemical Physics Letters, 806, 140052 (2022). https://doi.org/10.1016/j.cplett.2022.140052

D. Kalita, M. Ram, N. Limbu, R. Kalita, and A. Saxena, “Prediction of some physical properties in new half Heusler alloy NbAgSi,” Journal of Solid State Chemistry, 310, 122999 (2022). https://doi.org/10.1016/j.jssc.2022.122999

J.-J. Shi, T. Song, P.-T. Qi, X.-Y. Wang, Z.-J. Liu, and X.-W. Sun, “Structural stabilities and half-metallicity properties of the OsTiVIn and OsZrVIn quaternary Heusler alloys under high pressure,” Journal of Magnetism and Magnetic Materials, 566, 170316 (2023). https://doi.org/10.1016/j.jmmm.2022.170316

J. Haines, J.M. Leger, and G. Bocquillon, “Synthesis and Design of Superhard Materials,” Annu. Rev. Mater. Res. 31, 1 (2001). https://doi.org/10.1146/annurev.matsci.31.1.1

S. Pugh, “XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals,” London, Edinburgh, and Dublin philosophical magazine and journal of science, 45, 823 (1954). https://doi.org/10.1080/14786440808520496

S. Ahmad, S.D. Mahanti, K. Hoang, and M.G. Kanatzidis, “Ab initio studies of the electronic structure of defects in PbTe,” Phys. Rev. B, 74, 155205 (2006). https://doi.org/10.1103/PhysRevB.74.155205

V. Kumar, and D.R. Roy, “Structure, bonding, stability, electronic, thermodynamic and thermoelectric properties of six different phases of indium nitride,” J. Mater. Sci. 53, 8302–8313 (2018). https://doi.org/10.1007/s10853-018-2176-9

A.H. Reshak, “Thermoelectric properties of fully hydrogenated graphene: semi-classical Boltzmann theory,” J. Appl. Phys. 117, 225104 (2015). https://doi.org/10.1063/1.4922426

A.H. Reshak, S.A. Khan, and S. Auluck, “Thermoelectric properties of a single graphene sheet and its derivatives,” J. Mater. Chem. C, 2, 2346–2352 (2014). https://doi.org/10.1039/C3TC32260B

J.A. Abraham, R. Sharma, S. Ahmad, and A. Dey, “DFT investigation on the electronic, optical and thermoelectric properties of novel half-Heusler compounds ScAuX (X= Si, Ge, Sn, Pb) for energy harvesting technologies,” Eur. Phys. J. Plus, 136, 109 (2021). https://doi.org/10.1140/epjp/s13360-021-02021-7

S. Chibani, O. Arbouche, M. Zemouli, K. Amara, Y. Benallou, Y. Azzaz, B. Belgoumene, et al., “Ab Initio Prediction of the Structural, Electronic, Elastic, and Thermoelectric Properties of Half-Heusler Ternary Compounds TiIrX (X = As and Sb),” Journal of electronic materials, 47, 196-204 (2018). https://doi.org/10.1007/s11664-017-5761-9

M.S. Dresselhaus, Optical properties of solids, (New York, Academic Press, 1966).

G. Marius, The Physics of Semiconductors: Kramers-kronig Relations, (Springer, Berlin Heidelberg, 2010). pp. 775–776. https://doi.org/10.1007/978-3-642-13884-3_26

C. Ambrosch-Draxl, and J.O. Sofo, “Linear optical properties of solids within the full potential linearized augmented planewave method,” Comput. Phys. Commun. 175, 1–14 (2006). https://doi.org/10.1016/j.cpc.2006.03.005

M. Irfan, M.A. Kamran, S. Azam, M.W. Iqbal, T. Alharbi, A. Majid, S.B. Omran, et al., “Electronic structure and optical properties of TaNO: an ab initio study,” J. Mol. Graph. Model. 92, 296–302 (2019). https://doi.org/10.1016/j.jmgm.2019.08.006

D.R. Penn, “Wave-Number-Dependent Dielectric Function of Semiconductors,” Phys. Rev. 128, 2093–2097 (1962). https://doi.org/10.1103/PhysRev.128.2093

M. Gajdoš, K. Hummer, G. Kresse, and J. Furthmüller, “Linear optical properties in the projector-augmented wave methodology,” Phys. Rev. B, 73, 045112 (2006). https://doi.org/10.1103/PhysRevB.73.045112

A. Azouaoui, A. Hourmatallah, N. Benzakour, and K. Bouslykhane, “First-principles study of optoelectronic and thermoelectric properties of LiCaX (X=N, P and As) half-Heusler semiconductors,” Journal of Solid State Chemistry, 310, 123020 (2022). https://doi.org/10.1016/j.jssc.2022.123020

F. Benzoudji, O.M. Abid, T. Seddik, A. Yakoubi, R. Khenata, H. Meradji, G. Uğur, et al., “Insight into the structural, elastic, electronic, thermoelectric, thermodynamic and optical properties of MRhSb (M = Ti, Zr, Hf) half-Heuslers from ab initio calculations,” Chinese Journal of Physics, 59, 434-448 (2019). https://doi.org/10.1016/j.cjph.2019.04.009

P.K. Kamlesh, R. Gautam, S. Kumari, and A.S. Verma, “Investigation of inherent properties of XScZ (X = Li, Na, K; Z = C, Si, Ge) half-Heusler compounds: Appropriate for photovoltaic and thermoelectric applications,” Physica B, 615, 412536 (2021). https://doi.org/10.1016/j.physb.2020.412536

A. Besbes, R. Djelti, and I.K. Durukan, “Study of structural, electronic, elastic, optical and thermoelectric properties of half‑Heusler compound RbScSn: A TB‑mBJ DFT study,” Optical and Quantum Electronics, 54, 372 (2022). https://doi.org/10.1007/s11082-022-03780-y

R. Djelti, A. Besbes, and B. Bestani, “Investigation of electronic, optical, and thermoelectric properties of new d0 half‑metallic half‑Heusler alloys SiLiX (X = Ca and Sr),” Emergent Materials, 5, 1097–1108 (2022). https://doi.org/10.1007/s42247-021-00256-9

D. Poelman, and P.F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D Appl. Phys. 36, 1850 (2003). https://doi.org/10.1088/0022-3727/36/15/316

How to Cite
Ahmed, B. S., Anissa, B., Radouan, D., Al Bouzieh, N., Durukan, I. K., & Amrane, N. (2024). DFT Studies on Electronic, Elastic, Thermoelectric and Optical Properties of New Half-Heusler XRhZ (X = V, Nb and Z = Si, Ge) Semiconductors. East European Journal of Physics, (1), 294-307. https://doi.org/10.26565/2312-4334-2024-1-26