Diffusion of High-Energy Negatively Charged Particles in the Field Atomic Strings of an Oriented Crystal

  • Igor V. Kyryllin Akhiezer Institute for Theoretical Physics, National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine; V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0003-3625-7521
  • Mykola F. Shul’ga Akhiezer Institute for Theoretical Physics, National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine; V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0003-1679-6819
  • Oleksandr P. Shchus V.N. Karazin Kharkiv National University, Kharkiv, Ukraine; Akhiezer Institute for Theoretical Physics, National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine https://orcid.org/0000-0001-6063-197X
Keywords: Channeling, High-energy charged particle, Diffusion, Oriented crystal

Abstract

The work analyzes the dependence of the diffusion index of high-energy negatively charged particles on the energy of the transverse motion in oriented crystal. The crystal had an axial orientation relative to the direction of particle incidence. The analysis was carried out using the example of π mesons with a momentum of 100 GeV/c that impinged on a silicon crystal, which corresponds to the conditions achievable on secondary beam of the the CERN SPS accelerator. The analysis showed that the dependence under consideration is not monotonic. It has a minimum in the energy region slightly exceeding the value of the potential energy of particles at the saddle point of the potential of crystal atomic strings. At higher values of the energy of transverse motion of particles E, the diffusion index increases with increasing E, since this increases the average absolute value of the velocity of particle motion in the plane orthogonal to the crystal axis, near which motion takes plase. The increase in the diffusion index at low values of E is associated with the manifestation of incoherent scattering of particles on thermal vibrations of crystal atoms. The analysis carried out in the work is of interest both for a deeper understanding of the process of high-energy negatively charged particle beams passage through oriented crystals, and for improving methods for charged particle beams steering with a help of straight and bent oriented crystals.

Downloads

Download data is not yet available.

References

M.T. Robinson, and O.S. Oen, Phys. Rev. 132, 2385 (1963), https://doi.org/10.1103/PhysRev.132.2385

J. Lindhard, Mat. Fys. Medd. Dan. Vid. Selsk. 34, 1 (1965), http://gymarkiv.sdu.dk/MFM/kdvs/mfm%2030-39/mfm-34-14.pdf

W. Scandale et al., Phys. Lett. B, 760, 826 (2016), https://doi.org/10.1016/j.physletb.2016.07.072

W. Scandale et al., Eur. Phys. J. C, 78, 505 (2018), https://doi.org/10.1140/epjc/s10052-018-5985-8

A.G. Afonin et al., Instrum. Exp. Tech. 59, 196 (2016), https://doi.org/10.1134/S0020441216020019

W. Scandale et al., Phys. Lett. B, 733, 366 (2014), https://doi.org/10.1016/j.physletb.2014.05.010

I.V. Kyryllin, and N.F. Shul’ga, J. Instrum. 13, C02020 (2018), https://doi.org/10.1088/1748-0221/13/02/C02020

S. Redaelli et al., Eur. Phys. J. C, 81, 142 (2021), https://doi.org/10.1140/epjc/s10052-021-08927-x

F.M. Velotti et al., Phys. Rev. Accel. Beams, 22, 093502 (2019), https://doi.org/10.1103/PhysRevAccelBeams.22.093502

R. Rossi et al. J., Instrum. 18, P06027 (2023), https://doi.org/10.1103/PhysRevAccelBeams.22.093502

W. Scandale et al., Nucl. Instr. Meth. B, 467, 118 (2020), https://doi.org/10.1016/j.nimb.2020.01.011

W. Scandale et al., Eur. Phys. J. C, 79, 993 (2019), https://doi.org/10.1140/epjc/s10052-019-7515-8

W. Scandale et al., Phys. Lett. B, 804, 135396 (2020), https://doi.org/10.1016/j.physletb.2020.135396

W. Scandale et al., Eur. Phys. J. C, 80, 27 (2020), https://doi.org/10.1140/epjc/s10052-019-7590-x

W. Scandale et al., Eur. Phys. J. Plus, 137, 811 (2022), https://doi.org/10.1140/epjp/s13360-022-03034-6

I.V. Kirillin, Phys. Rev. Accel. Beams, 20, 104401 (2017), https://doi.org/10.1103/PhysRevAccelBeams.20.104401

I.V. Kyryllin, and N.F. Shul’ga, Eur. Phys. J. C, 79, 1015 (2019), https://doi.org/10.1140/epjc/s10052-019-7517-6

L. Bandiera et al., Eur. Phys. J. C, 81, 238 (2021), https://doi.org/10.1140/epjc/s10052-021-09021-y

T.N. Wistisen et al. Phys. Rev. Accel. Beams, 19, 071001 (2016), https://doi.org/10.1103/PhysRevAccelBeams.19.071001

L. Bandiera et al. The Eur. Phys. J. C, 81, 284 (2021), https://doi.org/10.1140/epjc/s10052-021-09071-2

A.I. Akhiezer, and N.F. Shul’ga, High energy electrodynamics in matter, (Gordon and Breach Science Publishers, Amsterdam, 1996).

A.A. Greenenko, A.V. Chechkin, and N.F. Shul’ga. Phys. Lett. A, 324, 82 (2004), https://doi.org/10.1016/j.physleta.2004.02.053

V.V. Tikhomirov. Probl. Atom. Sci. Tech. 3, 164 (2007), https://vant.kipt.kharkov.ua/ARTICLE/VANT_2007_3/article_2007_3_164.pdf

N.F. Shul’ga, I.V. Kirillin, and V.I. Truten’, J. Surf. Investig. 7, 398 (2013), https://doi.org/10.1134/S1027451013020468

D.S. Gemmell. Rev. Mod. Phys. 46, 129 (1974), https://doi.org/10.1103/RevModPhys.46.129

M.F. Shulga, V.I. Truten, I.V. Kirillin, The Journal of Kharkiv National University, physical series: ”Nuclei, Particles, Fields”, 887, 54 (2010), https://core.ac.uk/download/pdf/46589346.pdf (in Russian)

P.A. Doyle, and P.S. Turner. Acta Crystallogr. A, 24, 390 (1968), https://doi.org/10.1107/S0567739468000756

I.S. Gradshteyn, and I.M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. (Academic Press, London, 2007).

K. Levenberg. Q. Appl. Math. 2(2), 164 (1944), https://doi.org/10.1090/qam/10666

D.W. Marquardt. SIAM J. Appl. Math. 11(2), 431 (1963), https://doi.org/10.1137/0111030

Published
2023-12-02
Cited
How to Cite
Kyryllin, I. V., Shul’ga, M. F., & Shchus, O. P. (2023). Diffusion of High-Energy Negatively Charged Particles in the Field Atomic Strings of an Oriented Crystal. East European Journal of Physics, (4), 48-53. https://doi.org/10.26565/2312-4334-2023-4-05