FLRW Universe in f(R,Lm) Gravity with Equation of State Parameter

  • Bhupendra Kumar Shukla Department of Mathematics, Govt. College Bandri Sagar, India
  • R.K. Tiwari Department of Mathematics, Govt. Model Science College Rewa, India
  • D. Sofuoğlu Department of Physics, Istanbul University Vezneciler, Fatih, Istanbul, Turkey https://orcid.org/0000-0002-8842-7302
  • A. Beesham Department of Mathematical Sciences, University of Zululand, Kwa-Dlangezwa, South Africa; Faculty of Natural Sciences, Mangosuthu University of Technology, Jacobs, South Africa; National Institute for Theoretical and Computational Sciences, South Africa https://orcid.org/0000-0001-5350-6396
Keywords: f(R,Lm) gravity, Dark energy, Acceleration of universe, Equation of state parameter


Available observational data regarding current cosmological characteristics suggest that the universe is, to a large extent, both isotropic and homogeneous on a large scale. In this study, our objective is to analyze the Friedmann-Lemaitre-Robertson-Walker (FLRW) space-time using a perfect fluid distribution. We specifically investigate the framework of f(R, Lm) gravity within certain constraints. To accomplish this, we concentrate on a specific nonlinear f(R, Lm) model, represented by f(R, Lm) = R/2 + Lαm. The field equations are solved using the equation of state parameter of the form of the Chevallier-Polarski-Linder (CPL) parameterization. The deceleration parameter study finds an accelerating universe at late times. The transition redshift is found to be ztr = 0.89 ± 0.25. Also, we discussed the physical and geometrical properties of the model.


Download data is not yet available.


A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, R.L. Gilliland, et al., Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499

S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, et al., Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221

C.L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S.S. Meyer, et al., Astrophys. J. Suppl. 148, 119-134 (2003). https://doi.org/10.1086/377253

R.R. Caldwell, and M. Doran, Phys. Rev. D, 69, 103517 (2004).https://doi.org/10.1103/PhysRevD.69.103517

D.N. Spergel, L. Verde, H.V. Peiris, E. Komatsu, M.R. Nolta, C.L. Bennett, M. Halpern, et al., [WMAP Collaboration], Astrophys. J. Suppl. 148, 175 (2003). https://doi.org/10.1086/377226

D.J. Eisenstein, I. Zehavi, D.W. Hogg, R. Scoccimarro, M.R. Blanton, R.C. Nichol, R. Scranton, et al., Astrophys. J. 633, 560 (2005). https://doi.org/10.1086/466512

W.J. Percival, B.A. Reid, D.J. Eisenstein, N.A. Bahcall, T. Budavari, J.A. Frieman, M. Fukugita, at el., Mon. Not. R. Astron. Soc. 401, 2148 (2010). https://doi.org/10.1111/j.1365-2966.2009.15812.x

T. Koivisto, and D.F. Mota, Phys. Rev. D, 73, 083502 (2006). https://doi.org/10.1103/PhysRevD.73.083502

S.F. Daniel, Phys. Rev. D, 77, 103513 (2008). https://doi.org/10.1103/PhysRevD.77.103513

S. Weinberg, Rev. Mod. Phys. 61, 1 (1989). https://doi.org/10.1103/RevModPhys.61.1

E.J. Copeland, M. Sami, and S. Tsuikawa, Int. J. Mod. Phys. D, 15, 1753 (2006). https://doi.org/10.1142/S021827180600942X

A.A. Starobinsky, Gravit. Cosmol. 6, 157 (2000). https://doi.org/10.1142/9789812793324_0008

R.R. Caldwell, Phys. Lett. B, 545, 23 (2002). https://doi.org/10.1016/S0370-2693(02)02589-3

R.R. Caldwell, M. Kamionkowski, and N.N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003). https://doi.org/10.1103/PhysRevLett.91.071301

S. Capozziello, Int. J. Mod. Phys. D, 11, 483 (2002). https://doi.org/10.1142/S0218271802002025

T. Harko, and F.S.N. Lobo, Eur. Phys. J. C, 70, 373 (2010). https://doi.org/10.1140/epjc/s10052-010-1467-3

T. Harko, Phys. Lett. B, 669, 376 (2008). https://doi.org/10.1016/j.physletb.2008.10.007

T. Harko, Phys. Rev. D, 81, 084050 (2010). https://doi.org/10.1103/PhysRevD.81.084050

T. Harko, Phys. Rev. D, 81, 044021 (2010). https://doi.org/10.1103/PhysRevD.81.044021

S. Nesseris, Phys. Rev. D, 79, 044015 (2009). https://doi.org/10.1103/PhysRevD.79.044015

V. Faraoni, Phys. Rev. D, 76, 127501 (2007). https://doi.org/10.1103/PhysRevD.76.127501

V. Faraoni, Phys. Rev. D, 80, 124040 (2009). https://doi.org/10.1103/PhysRevD.80.124040

V. Faraoni, Cosmology in Scalar-Tensor Gravity, (Kluwer Academic, Dordrecht, 2004).

O. Bertolami, J. Paramos, and S. Turyshev, (2006). https://doi.org/10.48550/arXiv.gr-qc/0602016

J. Wang, and K. Liao, Class. Quantum Grav. 29, 215016 (2012). https://doi.org/10.1088/0264-9381/29/21/215016

B.S. Goncalves, and P.H.R.S. Moraes, (2023). https://doi.org/10.48550/arXiv.2101.05918

R. Solanki, B. Patel, L.V. Jaybhaye, and P.K. Sahoo, Commun. Theor. Phys. 75, 075401 (2023). https://doi.org/10.1088/1572-9494/acd4aa

L.V. Jaybhaye, R. Solanki, S. Mandal, and P.K. Sahoo, Universe, 9, 163 (2023). https://doi.org/10.3390/universe9040163

M. Zeyauddin, A. Dixit, and A. Pradhan, Int. J. Geom. M. Modern Phys. (2023). https://doi.org/10.1142/S0219887824500385

N. Myrzakulov, M. Koussour, A.H.A. Alnadhief, A. Abebe, Eur. Phys. J. P. 138, 852 (2023). https://doi.org/10.1140/epjp/s13360-023-04483-3

D.C. Maurya, Grav. Cosm. 29, 315 (2023). https://doi.org/10.1134/S020228932303012X

R. Solanki, B. Patel, L.V. Jaybhaye, and P.K. Sahoo, Commun. Theor. Phys. 75, 075401 (2023). https://doi.org/10.1088/1572-9494/acd4aa

J.K. Singh, Shaily, R. Myrzakulov, and H. Balhara, New Astr. 104, 102070 (2023). https://doi.org/10.1016/j.newast.2023.102070

L.V. Jaybhaye, S. Bhattacharjee, and P.K. Sahoo, Phys. Dark Univ. 40, 101223 (2023). https://doi.org/10.1016/j.dark.2023.101223

J.C. Fabris, O.F. Piattella, and D.C. Rodrigues, Eur. Phys. J. Plus, 138, 232 (2023). https://doi.org/10.1140/epjp/s13360-023-03845-1

A. Pradhan, D.C. Maurya, G.K. Goswami, and A. Beesham, Int. J. Geom. M. Mod. Phys. 20, 1230105 (2023). https://doi.org/10.1142/S0219887823501050

D.C. Maurya, New Astr. 100, 101974 (2023). https://doi.org/10.1016/j.newast.2022.101974

G.A. Carvalho, R.V. Lobato, D. Deb, P.H.R.S. Moraes, and M. Malheiro, Eur. Phys. J. C, 82, 1096 (2022). https://doi.org/10.1140/epjc/s10052-022-11058-6

R.V. Labato, G.A. Carvalho, and C.A. Bertulani, Eur. Phys. J. C, 81, 1013 (2021). https://doi.org/10.1140/epjc/s10052-021-09785-3

T. Harko and S. Shahidi, Eur. Phys. J. C, 82, 1003 (2022). https://doi.org/10.1140/epjc/s10052-022-10891-z

T. Harko and M.J. Lake, Eur. Phys. J. C, 75, 60 (2015). https://doi.org/10.1140/epjc/s10052-015-3287-y

T. Harko and F.S.N. Lobo, Galaxies, 2014(2), 410-465 (2014). https://doi.org/10.3390/galaxies2030410

M. Chevallier and D. Polarski, Int. J. Mod. Phys. D, 10, 213 (2001). https://doi.org/10.1142/S0218271801000822

E.V. Linder, Phys. Rev. Lett. 90, 091301 (2003). https://doi.org/10.1103/PhysRevLett.90.091301

How to Cite
Shukla, B. K., Tiwari, R., Sofuoğlu, D., & Beesham, A. (2023). FLRW Universe in f(R,Lm) Gravity with Equation of State Parameter. East European Journal of Physics, (4), 376-389. https://doi.org/10.26565/2312-4334-2023-4-48