Non-Relativistic Calculation of Excited-State Ionization Potentials for Li-Like Ions Using Weakest Bound Electron Potential Model Theory

  • Muhammad Rameez Mateen Department of Physics, University of Karachi, Pakistan
  • Roohi Zafar Department of Physics, NED University of Engineering and Technology, Karachi, Pakistan
  • Ahmed Ali Rajput Department of Physics, University of Karachi, Pakistan
  • Shafiq Ur Rehman Department of Physics, University of Karachi, Pakistan https://orcid.org/0009-0001-8598-359X
  • Muhammad Mustaqeem Zahid Department of Physics, University of Karachi, Pakistan
Keywords: non-relativistic ionization potential, Ionization Potentials, Breit-Pauli approximation, Weakest bound electron potential model (WBEPMT), nuclear charges

Abstract

In this study, a well-known Weakest Bound Electron Potential Model (WBEPM) was used to determine the exited-state ionization potential of lithium-like elements for different iso-spectrum series such as 1s2 2p1  P1/2, 1s2 3s2  S1/2 , 1s2 3d2  D1/2, 1s2 4s2  S1/2, 1s2 4p2  P1/2,  and 1s2 4d2  D1/2 having nuclear charges from Z = 3 to Z = 18. On the other hand, to utilize relativistic correction, Briet-Pauli approximation has also been applied to the ionization potential using a fourth-order polynomial expression in the nuclear charge Z. The deviation within the range of 0.1% has been observed between estimated and experimental values that are quite remarkable. Furthermore, new ionization potentials were proposed for iso-series with Z ranging from 19 to 30.

Downloads

Download data is not yet available.

References

X. Liu, and J. Zhang, “Study of non-relativistic energy and fine structure splitting using a Rayleigh–Ritz method for a high-angular-momentum state,” Journal of the Korean Physical Society, 80, 197–202 (2022). https://doi.org/10.1007/s40042-021-00349-y

A.V. Malyshev, I.S. Anisimova, D.V. Mironova, V.M. Shabaev, and G. Plunien, “QED theory of the specific mass shift in few-electron atoms,” Physical Review A, 100(1), 012510 (2019). https://doi.org/10.1103/PhysRevA.100.012510

V.M. Shabaev, D.A. Glazov, A.V. Malyshev, and I.I. Tupitsyn, “Nuclear recoil effect on the g factor of highly charged Li-like ions,” Physical Review A, 98(3), 032512 (2018). https://doi.org/10.1103/PhysRevA.98.032512

V.A. Yerokhin, A. Surzhykov, and A. Müller, “Relativistic configuration-interaction calculations of the energy levels of the 1s22l and 1s2l2l′ states in lithiumlike ions: Carbon through chlorine,” Phys. Rev. A, 96, 042505 (2017). https://doi.org/10.1103/PhysRevA.96.042505

V.A. Yerokhin, E. Berseneva, Z. Harman, I.I. Tupitsyn, and C.H. Keitel, “g factor of light ions for an improved determination of the fine-structure constant,” Physical Review Letters, 116(10), 100801 (2016). https://doi.org/10.1103/PhysRevLett.116.100801

M.H. Chen, K.T. Cheng, and W.R. Johnson, “Relativistic configuration-interaction calculations of n= 2 triplet states of heliumlike ions,” Physical Review A, 47(5), 3692 (1993). https://doi.org/10.1103/PhysRevA.47.3692

A. Ynnerman, and C. F. Fischer, “Multiconfigurational-Dirac-Fock calculation of the 2s21S0–2s2p3P1 spin-forbidden transition for the Be-like isoelectronic sequence,” Physical Review A, 51(3), 2020.(1995). https://doi.org/10.1103/PhysRevA.51.2020

F.A. Parpia, C.F. Fischer, and I.P. Grant, “GRASP92: A package for large-scale relativistic atomic structure calculations,” Computer physics communications, 94(2-3), 249-271 (1996). https://doi.org/10.1016/0010-4655(95)00136-0

J.A. Fernley, A. Hibbert, A.E. Kingston, and M.J. Seaton, “Atomic data for opacity calculations: XXIV. The boron-like sequence,” Journal of Physics B: Atomic, Molecular and Optical Physics, 32(23), 5507 (1999). https://doi.org/10.1088/0953-4075/32/23/307

G. Tachiev, and C.F. Fischer, “Breit-Pauli energy levels, lifetimes and transition data: boron-like spectra,” Journal of Physics B: Atomic, Molecular and Optical Physics, 33(13), 2419 (2000). https://doi.org/10.1088/0953-4075/33/13/304

K.M. Aggarwal, A. Hibbert, and F.P. Kenan, “Oscillator Strengths for Transitions in O III,” Astrophys. J. Suppl. 108, 393 (1997). https://doi.org/10.1086/312949

U.I. Safronova, W.R., Johnson, and A.E. Livingston, “Relativistic many-body calculations of electric-dipole transitions between n= 2 states in B-like ions,” Physical Review A, 60(2), 996 (1999). https://doi.org/10.1103/PhysRevA.60.996

M.J. Vilkas, Y. Ishikawa, and K. Koc, “Second‐order multiconfigurational Dirac–Fock calculations on boronlike ions,” International journal of quantum chemistry, 70(4‐5), 813-823 (1998). https://doi.org/10.1002/(SICI)1097-461X(1998)70:4/5%3C813::AID-QUA28%3E3.0.CO;2-0

N.W. Zheng, Y.J. Sun, T. Wang, D.X. Ma, Y. Zhang, and W. Su, “Transition probability of lithium atom and lithiumlike ions with weakest bound electron wave functions and coupled equations,” International Journal of Quantum Chemistry, 76(1), 51-61 (2000). https://doi.org/10.1002/(SICI)1097-461X(2000)76:1%3C51::AID-QUA5%3E3.0.CO;2-M

N.W. Zheng, T. Zhou, T. Wang, R.Y. Yang, Y.J. Sun, F. Wang, and C.G. Chen, “Ground-state atomic ionization energies for Z= 2–18 and up to 18 electrons,” Physical Review A, 65(5), 052510 (2002). https://doi.org/10.1103/PhysRevA.65.052510

N.W. Zheng, and T. Wang, “Systematical study on the ionization potential of excited states in carbon-like sequence,” Chemical physics letters, 376(5-6), 557-565 (2003). https://doi.org/10.1016/S0009-2614(03)01021-2

N.W. Zheng, and T. Wang, “Ionization potential of excited states of Be‐like sequence in the concept of iso‐spectrum‐level series,” International journal of quantum chemistry, 93(5), 344-350 (2003). https://doi.org/10.1002/qua.10487

N.W. Zheng, and T. Wang, “Calculation of excited‐state ionization potential for boron‐like sequence,” International journal of quantum chemistry, 98(6), 495-501 (2004). https://doi.org/10.1002/qua.20109

N.W Zheng, T. Wang, D.X. Ma, T. Zhou, and J. Fan, “Weakest bound electron potential model theory,” International journal of quantum chemistry, 98(3), 281-290 (2004). https://doi.org/10.1002/qua.20021

R. Siddiq, M.N. Hameed, M.H. Zaheer, M.B. Khan, and Z. Uddin, “Rydberg energies and transition probabilities of Li I for np–ms (m≤5) transitions,” Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 42 (2022). https://doi.org/10.1186/s43088-022-00224-0

M. Saeed, and Z. Uddin, “Lifetimes of Fine Levels of Li Atom for 20< n< 31 by Extended Ritz Formula,” (2023). https://doi.org/10.48550/arXiv.2308.01087

G. Çelik, M. Yildiz, and H.Ş. Kiliç, “Determination of Excited-State Ionization Potentials for Lithium-Like Sequence Using Weakest Bound Electron Potential Model Theory,” Acta Physica Polonica A, 112(3), 485-494 (2007). https://bibliotekanauki.pl/articles/2047731.pdf

J.R. Fuhr, W.C. Martin, A. Musgrove, J. Sugar, and W.L. Wiese, “NIST Atomic Spectroscopic Database,” (1998). http://physics.Nist.gov/PhysRefData/contents.html

A. Veillard, and E. Clementi, “Correlation Energy in Atomic Systems. V. Degeneracy Effects for the Second‐Row Atoms,” The Journal of Chemical Physics, 49(5), 2415-2421 (1968). https://doi.org/10.1063/1.1670415

J.B. Mann, and W.R. Johnson, “Breit interaction in multielectron atoms,” Physical Review A, 4(1), 41 (1971). https://doi.org/10.1103/PhysRevA.4.41

R.D. Cowan, The theory of atomic structure and spectra, No. 3, (Univ. of California Press, 1981).

Published
2023-12-02
Cited
How to Cite
Mateen, M. R., Zafar, R., Rajput, A. A., Ur Rehman, S., & Zahid, M. M. (2023). Non-Relativistic Calculation of Excited-State Ionization Potentials for Li-Like Ions Using Weakest Bound Electron Potential Model Theory. East European Journal of Physics, (4), 311-317. https://doi.org/10.26565/2312-4334-2023-4-41

Most read articles by the same author(s)