Electronic Structure Calculation of α-Al2X3 System (X = O, S) Based on R++Scan Functional

  • Muhammad R. Ramadhan Department of Chemical Engineering, Faculty of Industrial Engineering, UPN Veteran Yogyakarta, Sleman, Indonesia https://orcid.org/0000-0002-5115-5307
  • Salwa A. Khansa Department of Chemical Engineering, Faculty of Industrial Engineering, UPN Veteran Yogyakarta, Sleman, Indonesia
  • Qoriana Zulindra Department of Chemical Engineering, Faculty of Industrial Engineering, UPN Veteran Yogyakarta, Sleman, Indonesia
  • Dian P. Handayani Department of Chemical Engineering, Faculty of Industrial Engineering, UPN Veteran Yogyakarta, Sleman, Indonesia
  • Nina A. Wardani Department of Chemical Engineering, Faculty of Industrial Engineering, UPN Veteran Yogyakarta, Sleman, Indonesia
  • Fahmia Astuti Department of Physics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia https://orcid.org/0000-0003-1767-6202
Keywords: DFT, meta-gga, r SCAN, α-Al2O3, α-Al2S3

Abstract

Due to the necessity of reducing the reliance on fossil fuels, several systems are considered to be alternative and/or additional support for the existing battery material. In this report, structural and electronic properties of aluminium oxide (Al2O3) and aluminium sulfide (Al2S3) with hexagonal symmetry (α-phase), are investigated by utilizing density functional theory technique based on r++SCAN functional. The calculated lattice parameter and insulating gap for both systems are well matched with previous experimental studies and display higher accuracy compared to the results from local density approximation (LDA) and generalized gradient approximation (GGA) studies. The calculated insulating gap values are 10.3 eV and 4.1 eV for α-Al2O3 and α-Al2S3 respectively. For α-Al2O3 system, we observed hybridized s-p-d orbital of Al-O in the conduction states, consistent with the interpretation of past X-ray Absorption Near Edge Structure (XANES) data. Finally, the bulk and young modulus for α-Al2O3 are determined to be 251 GPa and 423 GPa which is very close to the known experimental values of 280 GPa and 451 GPa.

Downloads

Download data is not yet available.

References

Y. He, B. Matthews, J. Wang, S. Li, X. Wang, and G. Wu, Journal of Materials Chemistry. A, Materials for Energy and Sustainability 6, 735 (2018). https://doi.org/10.1039/C7TA09301B

X. Zhang, L. Li, E. Fan, Q. Xue, Y. Bian, F. Wu, and R. Chen, Chemical Society Reviews, 47, 7239 (2018). https://doi.org/10.1039/C8CS00297E

D.-W. Han, S.-J. Lim, Y.-I. Kim, S.-H. Kang, Y.C. Lee, and Y.-M. Kang, Chemistry of Materials, 26, 3644 (2014). https://doi.org/10.1021/cm500509q

T.K. Mueller, G. Hautier, A. Jain, and G. Ceder, Chemistry of Materials 23, 3854 (2011), https://doi.org/10.1021/cm200753g

W. Chu, X. Zhang, J. Wang, S. Zhao, S. Liu, and H. Yu, Energy Storage Materials, 22, 418 (2019). https://doi.org/10.1016/j.ensm.2019.01.025

B. Krebs, A. Schiemann, and M. Läge, Zeitschrift Für Anorganische Und Allgemeine Chemie, 619, 983 (1993). https://doi.org/10.1002/zaac.19936190604

A. Eftekhari, Solid State Ionics, 167, 237 (2004). https://doi.org/10.1016/j.ssi.2004.01.016

W.-K. Kim, D. Han, W. Ryu, S. Lim, and H. Kwon, Electrochimica Acta, 71, 17 (2012). https://doi.org/10.1016/j.electacta.2012.03.090

M. Lucht, M. Lerche, H.-C. Wille, Yu.V. Shvyd’ko, H.D. Rüter, E. Gerdau, and P. Becker, Journal of Applied Crystallography, 36, 1075 (2003). https://doi.org/10.1107/S0021889803011051

R.H. French, Journal of the American Ceramic Society, 73, 477 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb06541.x

R.H. Bube, Photoconductivity of Solids, (Wiley, 1960). pp. 172

Y. Xu and W. Y. Ching, Physical Review B, 43, 4461 (1991). https://doi.org/10.1103/physrevb.43.4461

T.V. Perevalov, V.A. Gritsenko, and V.V. Kaichev, European Physical Journal-Applied Physics, 52, 30501 (2010). https://doi.org/10.1051/epjap/2010159

M. Bortz, and R.H. French, Applied Physics Letters, 55, 1955 (1989). https://doi.org/10.1063/1.102335

M.E. Innocenzi, R.T. Swimm, M. Bass, R.H. French, A. Villaverde, and M.R. Kokta, Journal of Applied Physics, 67, 7542 (1990). https://doi.org/10.1063/1.345817.

M. Choi, A. Janotti, and C.G. Van De Walle, Journal of Applied Physics, 113, 044501 (2013). https://doi.org/10.1063/1.4784114

J. Muscat, A. Wander, and N.M. Harrison, Chemical Physics Letters, 342, 397 (2001)., https://doi.org/10.1016/S0009-2614(01)00616-9

D. Zhang, X. Zhang, B. Wang, S. He, S. Liu, M. Tang, and H. Yu, Journal of Materials Chemistry, A, Materials for Energy and Sustainability, 9, 8966 (2021). https://doi.org/10.1039/D1TA01422F

S. Lysgaard, and J.M.G. Lastra, Journal of Physical Chemistry C, 125, 16444 (2021). https://doi.org/10.1021/acs.jpcc.1c04484

B. Ramogayana, D. Santos‐Carballal, K.P. Maenetja, N.H. De Leeuw, and P.E. Ngoepe, ACS Omega, 6, 29577 (2021) https://doi.org/10.1021/acsomega.1c03771

J. Sun, A. Ruzsinszky, and J.P. Perdew, Physical Review Letters, 115, 036402 (2015). https://doi.org/10.1103/physrevlett.115.036402

C. Lane, J.W. Furness, I. Buda, Y. Zhang, R.S. Markiewicz, B. Barbiellini, J. Sun, and A. Bansil, Physical Review B, 98, 125140 (2018). https://doi.org/10.1103/physrevb.98.125140

M.R. Ramadhan, F. Astuti, J. Anavisha, I.M. Al-Hafiiz, W.R. Tiana, A. Oktaviana, M. Meireni, and D. Parwatiningtyas, Computational Condensed Matter, 32, e00709 (2022). https://doi.org/10.1016/j.cocom.2022.e00709

Y. Yao, and Y. Kanai, Journal of Chemical Physics, 146, (2017). https://doi.org/10.1063/1.4984939

J. Anavisha, A.F. Gunawan, D. Alfanny, W.R. Tiana, L. Yuliantini, J. Angel, D. Parwatiningtyas, and M.R. Ramadhan, AIP Conference Proceedings, 2708, 020006 (2022). https://doi.org/10.1063/5.0122539

H.-D. Saßnick, and C. Cocchi, Electronic Structure, 3, 027001 (2021). https://doi.org/10.1088/2516-1075/abfb08

A.P. Bartók, and J.R. Yates, Journal of Chemical Physics, 150, 161101 (2019). https://doi.org/10.1063/1.5094646

D. Mejı́a-Rodrı́Guez, and S.B. Trickey, Physical Review B, 102, 121109 (2020). https://doi.org/10.1103/PhysRevB.102.121109

J.W. Furness, A.D. Kaplan, J. Ning, J.P. Perdew, and J. Sun, Journal of Chemical Physics, 156, 034109 (2022). https://doi.org/10.1063/5.0073623

R. Kingsbury, A. Gupta, C.J. Bartel, J.M. Munro, S. Dwaraknath, M. Horton, and K.A. Persson, Physical Review Materials, 6, 013801 (2022). https://doi.org/10.1103/PhysRevMaterials.6.013801

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, et al., Journal of Physics: Condensed Matter, 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

P. Giannozzi, O. Andreussi, T. Brumme, O. Bunău, M. B. Nardelli, M. Calandra, R. Car, et al., Journal of Physics: Condensed Matter, 29, 465901 (2017). https://doi.org/10.1088/1361-648x/aa8f79

S. Lehtola, C. Steigemann, M.J.T. Oliveira, and M.A.L. Marques, SoftwareX, 7, 1 (2018). https://doi.org/10.1016/j.softx.2017.11.002

K. Momma, and F. Izumi, Journal of Applied Crystallography, 44, 1272 (2011). https://doi.org/10.1107/S0021889811038970

R.C.R. Santos, E. Longhinotti, V.N. Freire, R.B. Reimberg, and E.W.S. Caetano, Chemical Physics Letters, 637, 172 (2015). https://doi.org/10.1016/j.cplett.2015.08.004

A. Jain, G. Hautier, C. Moore, S.P. Ong, C.R. Fischer, T. Mueller, K.A. Persson, and G. Ceder, Computational Materials Science, 50, 2295 (2011). https://doi.org/10.1016/j.commatsci.2011.02.023

S. Swathilakshmi, R.K.V. Devi, and G.S. Gautam, (2023). https://arxiv.org/abs/2301.00535

J.A. Van Bokhoven, T. Nabi, H. Sambé, D.E. Ramaker, and D.C. Koningsberger, Journal of Physics: Condensed Matter, 13, 10247 (2001). https://doi.org/10.1088/0953-8984/13/45/311

S.V. Sinogeikin, D.L. Lakshtanov, J.D. Nicholas, J.M. Jackson, and J.D. Bass, Journal of the European Ceramic Society, 25, 1313 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.01.001

M. De Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M.H.F. Sluiter, et al., Scientific Data 2, (2015), https://doi.org/10.1038/sdata.2015.9

Published
2023-12-02
Cited
How to Cite
Ramadhan, M. R., Khansa, S. A., Zulindra, Q., Handayani, D. P., Wardani, N. A., & Astuti, F. (2023). Electronic Structure Calculation of α-Al2X3 System (X = O, S) Based on R++Scan Functional. East European Journal of Physics, (4), 210-215. https://doi.org/10.26565/2312-4334-2023-4-26