Impacts of Temperature Dependent Thermal Conductivity and Viscosity on Slipped Flow of Maxwell Nanofluid

Keywords: heat transfer, Maxwell fluid, variable thermal conductivity, variable viscosity, slip conditions

Abstract

The mathematical model to inspect the effects of changeable thermo-physical properties such as thermal conduction, slip effects and viscosity on Maxwellian nanofluid is proposed. The thermal conductivity increases rapidly due to presence of nanoparticles such as metals, carbides, oxides etc. in base fluid. The flow occurs from the stagnated point pass a stretched sheet with slipped conditions. The characteristics of the Brownian motion as well as the thermophoresis processes are also taken into consideration. By means of similarity transformations, the ODEs are reduced from the equations influencing the fluid flow. A built-in solver of MATLAB namely bvp4c which is a collocation formula implementing the Lobatto IIIa finite differences numerical method is applied to solve these transformed equations numerically. The graphs of the numerical outcomes representing impacts of variations in different parameters on the fluid movement, transfer of heat along with mass are analyzed. This investigation leads to an important aspect that as the thermal conductivity in the flow is intensified, the temperature of the fluid reduces with high aggregation of the nanoparticles near the sheet’s surface. Also, the rates of heat and mass transferral depletes due to the relaxation of Maxwellian fluid. Furthermore, the effectiveness of the present numerical computations is determined by carrying out comparisons of heat and mass transferred rates against the previous analytical results for several values of thermophoresis and Prandtl parameters. The effectiveness of its outcomes can be applied in nanoscience technology and polymeric industries for their developments.

Downloads

Download data is not yet available.

References

S.D. Poisson, “Sur les Equations Generale de l’Equilibre et du Mouvement des Corps Solides Elastiques et des Fluides,” Journal de l’Ecole Polytechnique, 13(20), 18 17 (1829).

J.C. Maxwell, “On double refraction in a viscous fluid in motion,” Proc. R. Soc. Long. 22(148-155),46-47 (1873). https://doi.org/10.1098/rspl.1873.0011

L. Boltzmann, “Zur Theorie der elastischen Nachwirkung sitzungber,”Kaiserl-Akad, Wise. (Wien), Math. Naturwisslasse 70, (II), 1 22, 18 17, 30, 275-306 (1874).

H.A. Barnes, J.F. Hutton, and K. Walters, An Introduction to Rheology, (Elsevier, New York, 1989).

R.J. Poole, Rheology Bulletin, 53(2), 32 (2012). https://pcwww.liv.ac.uk/~robpoole/PAPERS/POOLE_45.pdf

K. Sadeghy, H. Hajibeygi, and S.M. Taghavi, International Journal of Non-Linear Mechanics, 41, 1242 (2006). https://doi.org/10.1016/j.ijnonlinmec.2006.08.005

S. Wang, and W. Tan, Int. J. of Heat and Fluid Flow, 32, 88 (2011). https://doi.org/10.1016/j.ijheatfluidflow.2010.10.005

K. Hiemenz, Dingler’s Polytech. J. 326, 321-324 (1911).

T.C. Chiam, International Communications in Heat and Mass Transfer, 23(2), 239-48 (1996). https://doi.org/10.1016/0735-1933(96)00009-7

T.C. Chiam, Acta Mechanica, 129, 63 (1998). https://doi.org/10.1007/BF01379650

J. Ahmed, M. Khan, and L. Ahmad, Journal of Molecular Liquids, 287, 110853 (2019). https://doi.org/10.1016/j.molliq.2019.04.130

M. Sunder Ram, K. Spandana, Md. Shamshuddin, and S.O. Salawu, Int. J. of Modelling and Simulation, 43(5), 670 (2022). https://doi.org/10.1080/02286203.2022.2112008

N.N. Reddy, D.R. Yanala, B.S. Goud, and S.R. Vempati, Heat Transfer, 52, 3538 (2023). https://doi.org/10.1002/htj.22839

H. Dessie, Heat Transfer. 50, 6984 (2021). https://doi.org/10.1002/htj.22213

Y.D. Reddy, and I. Mangamma, Numerical Heat Transfer, Part A: Applications, 1-27, (2023).https://doi.org/10.1080/10407782.2023.2230356

S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in: Developments and Applications of Non-Newtonian Flows, edited by D.A. Siginer, and H.P. Wang, (ASME, New York, 1995), pp. 99-105.

J. Buongiorno, Journal of Heat Transfer, 128, 240 (2006). https://doi.org/10.1115/1.2150834

A.V. Kuznetsov, and D.A. Nield, Int. J. Therm. Sci. 49, 243 (2010). https://doi.org/10.1016/j.ijthermalsci.2009.07.015

W.A. Khan, and I. Pop, Int. J. Heat Mass Transf. 53, 2477 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032

O.D. Makinde, and A. Aziz, Int. J. of Thermal Sciences, 50, 1326 (2011). https://doi.org/10.1016/j.ijthermalsci.2011.02.019

M. Sajid, B. Ahmed, and Z. Abbas, J. Egyptian Math. Soc. 23, 440 (2014). https://doi.org/10.1016/j.joems.2014.05.013

Y. Abdela, B. Shankar, and T. Srinivasulu, Int. J. Comput. Eng. Res. 8(2), 2250 (2018). https://api.semanticscholar.org/CorpusID:208625190

G.K. Ramesh, B.J. Gireesha, T. Hayat, and A. Alsaedi, Alexandria Engineering Journal, 55, 857 (2016). https://doi.org/10.1016/j.aej.2016.02.007

R. Mishra, Int. J. Eng. Sci. Res. Technol. 6(4), 131 (2017). https://doi.org/10.5281/zenodo.557138

M.A. El-Aziz, and A.A. Afify, Math. Probl. Eng. (2018). https://doi.org/10.1155/2018/9402836

W. Ibrahim, and M. Negera, Journal of the Egyptian Mathematical Society, 28, 7 (2020). https://doi.org/10.1186/s42787-019-0057-2

O.D. Makinde, W.A. Khan, and J.R. Culham, Int. J. Heat Mass Transf. 93, 595 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.050

O.D. Makinde, F. Mabood, W.A. Khan, and M.S. Tshehla, Journal of Molecular Liquids, 219, 624 (2016). https://doi.org/10.1016/j.molliq.2016.03.078

A.O. Ali, and O.D. Makinde, Journal of Appl. Fluid Mech. 8(4), 793 (2015). https://doi.org/10.18869/acadpub.jafm.67.223.22967

S. Manjunatha, and B.J. Gireesha, Ain Shams Eng. J. 7, 505 (2016). https://doi.org/10.1016/j.asej.2015.01.006

D. Borgohain, Trends in Sciences, 19(21), 6306 (2022). https://doi.org/10.48048/tis.2022.6306

D. Iranian, K. Sudarmozhi, I. Khan, and A. Mohamed, International Journal of Thermofluids, 20, (2023). https://doi.org/10.1016/j.ijft.2023.100396

L.F. Shampine, M.W. Reichelt, and J. Kierzenka, Solving Boundary Value Problems for Ordinary Differential Equations in MATLAB with bvp4c. MATLAB File Exchange, (2004).

Published
2023-12-02
Cited
How to Cite
Borgohain, D. (2023). Impacts of Temperature Dependent Thermal Conductivity and Viscosity on Slipped Flow of Maxwell Nanofluid. East European Journal of Physics, (4), 120-128. https://doi.org/10.26565/2312-4334-2023-4-12