Counting Efficiency of Registration of Contributions of Fast Neutron Reaction Products by Detectors Based on Oxide Scintillators ZnWO4, Bi4Ge3O12, CdWO4 and Gd2SiO5

  • Gennadiy M. Onyshchenko V.N. Karazin Kharkiv National University, Kharkiv, Ukraine; Institute of Scintillation Materials, STC "Institute of Single Crystals" National Academy of Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0001-6945-8413
  • Boris V. Grynyov Institute of Scintillation Materials, STC "Institute of Single Crystals" National Academy of Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0003-1700-0173
  • Ivan I. Yakymenko V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-0194-8376
  • Sergey V. Naydenov Institute of Single Crystals, STC "Institute of Single Crystals", National Academy of Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-5585-763X
  • Pylyp E. Kuznietsov V.N. Karazin Kharkiv National University, O.I. Akhiezer Department for Nuclear and High Energy Physics, Kharkiv, Ukraine https://orcid.org/0000-0001-8477-1395
  • Oleksandr Shchus V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0001-6063-197X
Keywords: Oxide scintillator, ZWO, BGO, CWO, GSO, Fast neutrons, 239Pu-Be, Resonance capture, Counting efficiency, Density of nuclear levels, Single photoelectron mode

Abstract

The results of the study of the contributions of the interaction reactions of fast neutron sources of 239Pu-Be and 252Cf to the counting efficiency of registration by oxide scintillators CdWO4, ZnWO4, Bi4Ge3O12 and Gd2SiO5, presented. The amount of gamma quanta per input neutron emitted from final nuclei excited in the reactions of inelastic scattering (n, nʹγ)in, resonant scattering (n, n)res and capture (n, γ)res and radiation capture (n, γ)cap was measured. PMT R1307 operating in single-electron mode was used as a photodetector, the background rate was ~ 5*103 s-1. The measured efficiency ε for scintillators ø40x40 mm was 752 for ZWO, 532 for CWO, 37 for GSO, and 23 for BGO in "counts/neutron" units, measurement error rate ~ 3-5%. The formation of the detector response is influenced by the parameters of the scintillator nuclei, such as the values of the interaction cross sections in the resonance region, the density of nuclear levels of the final nuclei, the lifetime of excited nuclear states, the upper limit of the resonance region of the cross section, as well as the scintillation time and geometric parameters of the scintillators. A phenomenological model of the response of an oxide scintillator to fast neutrons is proposed.

Downloads

Download data is not yet available.

References

M. Anelli, G. Battistoni, S. Bertolucci, C. Bini, P. Branchini, C. Curceanu, G. De Zorzi, et al., Nuclear Instruments and Methods in Physics Research A, 581, 368 (2007). https://doi.org/10.1016/j.nima.2007.08.005

G. Onyshchenko, V. Ryzhikov, I. Yakymenko, V. Khodusov, S. Naydenov, A. Opolonin, and S. Makhota, East European Journal of Physics, (3), 54 (2019). https://doi.org/10.26565/2312-4334-2019-3-07

G.M. Onyshchenko, V.D. Ryzhikov, I.I. Yakymenko, and O.P. Shchus’, East European Journal of Physics, (4), 91-94 (2019). https://doi.org/10.26565/2312-4334-2019-4-10

B. Grynyov, V. Ryzhikov, L. Nagornaya, G. Onishcenko and L. Piven’, Patent of USA. US 8.058.624 B2 (15 November 2011).

G.M. Onyshchenko, A method of recording fast neutrons and a combined detector for its implementation, Pat. 117862 Ukraine № a 2016 11057; publ. 10.10.2018, bull. № 19.

I.I. Yakymenko, and /G.M. Onyshchenko, Neutron detector: Pat. 127053 Ukraine. № u 2018 02276; publ. 10.07.2018, bull. No. 13.

B.V. Grinev, V.D. Ryzhikov, L.L. Nagornaia, G.M. Onyshchenko, and L.A. Piven, Pat. of Ukraine, N96428. The method of registration of fast neutrons. 10.11.2011.

L.L. Nagornaya, V.D. Ryzhikov, B.V. Grinyov, L.A. Piven’, G.M. Onyshchenko, and E.K. Lysetska, Abstracts IEEE Nuclear Science Symposium, (Drezden, Germany, 2008).

О.І. Ахієзер, and Yu.A. Berezhnoy, Теорія ядерних реакцій [Theory of nuclear reactions], (Kharkiv, 2011). (in Ukrainian)

A.G. Sitenko, Theory of Nuclear Reactions, (World Scientific, 1990).

J.M. Blatt, and V.F. Weisskopf, Theoretical Nuclear Physics, (2010).

H.D. Choi, R.B. Firestone, R.M. Lindstrom, G.L. Molnar, S.F. Mughabghab, R. Paviotti-Corcuera, et al., Database of prompt gamma rays from slow neutron capture for elemental analysis, (International Atomic Energy Agency, Vienna, 2007).

G. Breit, Theory of resonance reactions and allied topics, (Springer-Verlag, 1959).

A.M. Demidov, L.I. Govor, Yu.K. Cherepantsev, M.R. Ahmed, S. Al-Najjar, M.A. AlAmili, N. Al-Assafi, and N. Rammo, Atlas of Gamma-Ray Spectra from the Inelastic Scattering of Reactor Fast Neutrons, (Nuclear Research Institute, Baghdad, Iraq, 2017). https://nucleardata.berkeley.edu/atlas/download.html

Z. Alfassi, and C. Chung, Prompt Gamma Neutron Activation Analysis, (CRC Press, Boca Raton, FL, 1995).

I. Bergqvist, B. Lundberg, I. Nilsson, and N. Starfelt, Nuclear physics, 80, 198 (1966). https://doi.org/10.1016/0029-5582(66)90836-4

L. Bardelli, M. Bini, P.G. Bizzeti, L. Carraresi, F.A. Danevich, T.F. Fazzini, B.V. Grinyov, et al., Nuclear Instruments and Methods in Physics Research Section A, Accelerators Spectrometers Detectors and Associated Equipment, 569, 743 (2006). https://doi.org/10.1016/j.nima.2006.09.094

J.B. Marion, and J.L. Fowler, Fast neutron physics, Part I, Techniques, (1961).

J.B. Marion, and J.L. Fowler, Fast neutron physics, Part II: Experiments and Theory, (1961).

H. Goldstein, Fundamental Aspects of Reactor Shielding, (Addison-Wesley, 1959).

Tables of Nuclear Data. Japanese Evaluated Nuclear Data Library (JENDL). https://wwwndc.jaea.go.jp/NuC/index.html

JANIS Book of neutron-induced cross-sections. Java-based Nuclear Information Software (JANIS). https://www.oecd-nea.org/jcms/pl_44624/janis-books

Brookhaven national laboratory. Databases. https://www.nndc.bnl.gov/ensdf/

T. von Egidy, and D. Bucurescu, Physical Review C, 72, 044311 (2005). https://doi.org/10.1103/PhysRevC.72.044311

M. Grodzicka-Kobylka, T. Szczesniak, L. Swiderski, K. Brylew, M. Moszyński, J.J. Valiente-Dobón, P. Schotanus, et al., Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1019, 165858 (2021). https://doi.org/10.1016/j.nima.2021.165858

V. Ryzhikov, G. Onyshchenko, I. Yakymenko, S. Naydenov, A. Opolonin, S. Makhota, East European Journal of Physics, (2), 11 (2019). https://doi.org/10.26565/2312-4334-2019-2-02

M. Grodzicka-Kobylka, M. Moszyński, and T. Szczęśniak, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 926, 129 (2019). https://doi.org/10.1016/j.nima.2018.10.065

S. Mianowski, D.M. Borowicz, K. Brylew, A. Dziedzic, M. Grodzicka-Kobylka, A. Korgul, M. Krakowiak, et al., Journal of Instrumentation, 15(3), P03002 (2020), https://doi.org/10.1088/1748-0221/15/03/P03002

Published
2023-12-02
Cited
How to Cite
Onyshchenko, G. M., Grynyov, B. V., Yakymenko, I. I., Naydenov, S. V., Kuznietsov, P. E., & Shchus, O. (2023). Counting Efficiency of Registration of Contributions of Fast Neutron Reaction Products by Detectors Based on Oxide Scintillators ZnWO4, Bi4Ge3O12, CdWO4 and Gd2SiO5. East European Journal of Physics, (4), 355-370. https://doi.org/10.26565/2312-4334-2023-4-46