A Study of Evolution of Cosmological Parameters Based on Dark Energy Models in Kaluza-Klein Framework
Abstract
The purpose of the present study is to determine the characteristics of time evolution of various cosmological quantities, based on four models constructed for a universe undergoing accelerated expansion. This formulation is done in the framework of Kaluza-Klein space-time, for zero spatial curvature. To solve the field equations, an ansatz is chosen for each model in such a way that it leads to a signature flip of the deceleration parameter, to ensure its consistency with recent astrophysical observations indicating a change from a decelerated expansion to an accelerated expansion of the universe. Based on these four models, time evolutions of several cosmological parameters are obtained and their variations are shown graphically against time. The arbitrary constants, associated with each model, are so tuned that the model correctly predicts the values of the Hubble parameter, deceleration parameter, energy density and gravitational constant at the present time. The findings from these models are consistent with each other, and they are in agreement with the observed features. The gravitational constant (G) shows a rapid fall in the early universe, followed by an extremely slow rise which continues at the present time. Taking (G) as a constant in two of the four models, the cosmological constant is found to be independent of time. A significant finding is that the signature flip of the deceleration parameter almost coincides with the signature flip of the cosmological constant (Λ), pointing towards a relation between the accelerated expansion and the dark energy which is represented by Λ. Other plots with respect to Λ also depict dark energy’s role in governing cosmic evolution. Considering its dynamical nature, Λ is referred to as cosmological term (instead of cosmological constant) in the text. Contrary to the common trend of using arbitrary units, the SI units for all measurable quantities are used.
Downloads
References
A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116(3), 1009–1038 (1998). https://doi.org/10.1086/300499
S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, et al., “Measurements of Ω and Λ from 42 High‐Redshift Supernovae,” Astrophys. J. 517(2), 565–586 (1999). https://doi.org/10.1086/307221
A. G. Riess, P. E. Nugent, R. L. Gilliland, B. P. Schmidt, J. Tonry, M. Dickinson, R. I. Thompson, et al., “The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration,” Astrophys. J. 560(1), 49–71 (2001). https://doi.org/10.1086/322348
T. Padmanabhan and T. R. Choudhury, “A theoretician's analysis of the supernova data and the limitations in determining the nature of dark energy,” Mon. Not. R. Astron. Soc. 344(3), 823–834 (2003). https://doi.org/10.1046/j.1365-8711.2003.06873.x
L. Amendola, “Acceleration at z > 1?” Mon. Not. R. Astron. Soc. 342(1), 221–226 (2003). https://doi.org/10.1046/j.1365-8711.2003.06540.x
B. Ratra, and P. J. E. Peebles, “Cosmological consequences of a rolling homogeneous scalar field,” Phys. Rev. D 37(12), 3406 3427 (1988). https://doi.org/10.1103/physrevd.37.3406
T. Chiba, T. Okabe, and M. Yamaguchi, “Kinetically driven quintessence,” Phys. Rev. D 62(2) (2000). https://doi.org/10.1103/physrevd.62.023511
E. Elizalde, S. Nojiri, and S. D. Odintsov, “Late-time cosmology in a (phantom) scalar-tensor theory: Dark energy and the cosmic speed-up,” Phys. Rev. D 70(4) (2004). https://doi.org/10.1103/physrevd.70.043539
R. R. Caldwell, “A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state,” Phys. Lett. B 545(1-2), 23–29 (2002). https://doi.org/10.1016/s0370-2693(02)02589-3
D. Janzen, “Einstein's cosmological considerations,” (2014). https://arxiv.org/pdf/1402.3212.pdf
J. M. Overduin and F. I. Cooperstock, “Evolution of the scale factor with a variable cosmological term,” Phys. Rev. D 58(4) (1998). https://doi.org/10.1103/physrevd.58.043506
S. Nojiri, S. D. Odintsov, and S. Tsujikawa, “Properties of singularities in the (phantom) dark energy universe,” Phys. Rev. D 71(6) (2005). https://doi.org/10.1103/physrevd.71.063004
S. Nojiri, S. D. Odintsov, and M. Sasaki, “Gauss-Bonnet dark energy,” Phys. Rev. D 71(12) (2005). https://doi.org/10.1103/physrevd.71.123509
T. Harko, F. S. N. Lobo, S. Nojiri, and S. D. Odintsov, “f(R,T)gravity,” Phys. Rev. D 84(2) (2011). https://doi.org/10.1103/physrevd.84.024020
C. Brans and R. H. Dicke, “Mach's Principle and a Relativistic Theory of Gravitation,” Phys. Rev. 124(3), 925–935 (1961). https://doi.org/10.1103/physrev.124.925
D. Sáez and V. J. Ballester, “A simple coupling with cosmological implications,” Phys. Lett. A 113(9), 467–470 (1986). https://doi.org/10.1016/0375-9601(86)90121-0
M. Kiran, D. R. K. Reddy, and V. U. M. Rao, “Minimally interacting holographic dark energy model in a scalar- tensor theory of gravitation,” Astrophys. Space Sci. 354(2), 577–581 (2014). https://doi.org/10.1007/s10509-014-2099-0
Y. Aditya, V. U. M. Rao, and M. Vijaya Santhi, “Bianchi type-II, VIII and IX cosmological models in a modified theory of gravity with variable Λ,” Astrophys. Space Sci. 361(2) (2016). https://doi.org/10.1007/s10509-015-2617-8
V. U. M. Rao, U. Y. D. Prasanthi, and Y. Aditya, “Plane symmetric modified holographic Ricci dark energy model in Saez-Ballester theory of gravitation,” Results Phys. 10, 469–475 (2018). https://doi.org/10.1016/j.rinp.2018.06.027
Y. Aditya and D. R. K. Reddy, “FRW type Kaluza–Klein modified holographic Ricci dark energy models in Brans–Dicke theory of gravitation,” Eur. Phys. J. C 78(8) (2018). https://doi.org/10.1140/epjc/s10052-018-6074-8
T. Kaluza, “On the Unification Problem in Physics,” Int. J. Mod. Phys. D 27(14), 1870001 (2018). https://doi.org/10.1142/s0218271818700017
O. Klein, “Quantentheorie und fünfdimensionale Relativitätstheorie,” Z. Für Phys. 37(12), 895–906 (1926). https://doi.org/10.1007/bf01397481
A. Chodos, and S. Detweiler, “Where has the fifth dimension gone?” Phys. Rev. D 21(8), 2167–2170 (1980). https://doi.org/10.1103/physrevd.21.2167
E. Witten, “Some properties of O(32) superstrings,” Phys. Lett. B 149(4-5), 351–356 (1984). https://doi.org/10.1016/0370-2693(84)90422-2
A. Thomas, C. Alan, and P.G.O. Freund, 1936, editors, Modern Kaluza-Klein theories, (Addison-Wesley Pub. Co., Menlo Park, Calif, 1987). http://pi.lib.uchicago.edu/1001/cat/bib/719574
T. Appelquist and A. Chodos, “Quantum Effects in Kaluza-Klein Theories,” Phys. Rev. Lett. 50(3), 141–145 (1983). https://doi.org/10.1103/physrevlett.50.141
W. J. Marciano, “Time Variation of the Fundamental “Constants” and Kaluza-Klein Theories,” Phys. Rev. Lett. 52(7), 489–491 (1984). https://doi.org/10.1103/physrevlett.52.489
U. Mukhopadhyay, I. Chakraborty, S. Ray, and A. A. Usmani, “A Dark Energy Model in Kaluza-Klein Cosmology,” Int. J. Theor. Phys. 55(1), 388–395 (2015). https://doi.org/10.1007/s10773-015-2672-5
P. B. Pal, “Determination of cosmological parameters: An introduction for non-specialists,” Pramana 54(1), 79–91 (2000). https://doi.org/10.1007/s12043-000-0008-2
G. K. Goswami, “Cosmological parameters for spatially flat dust filled Universe in Brans-Dicke theory,” Res. Astron. Astrophys. 17(3), 27 (2017). https://doi.org/10.1088/1674-4527/17/3/27
A. Pradhan, G. Goswami, and A. Beesham, “The reconstruction of constant jerk parameter with f(R,T) gravity,” J. High Energy Astrophys. 2023. https://doi.org/10.1016/j.jheap.2023.03.001
A. Pradhan, P. Garg, and A. Dixit, “FRW cosmological models with cosmological constant in f(R, T) theory of gravity,” Can. J. Phys. 99(9), 741–753 (2021). https://doi.org/10.1139/cjp-2020-0282
G. P. Singh, A. Y. Kale, and J. Tripathi, “Dynamic cosmological ‘constant’in brans dicke theory,” Rom. Journ. Phys. 58(1-2), 23-35 (2013). https://rjp.nipne.ro/2013_58_1-2/0023_0035.pdf
A.K. Yadav, “Bianchi type V matter filled universe with varying Lambda term in general relativity,” (2009). https://arxiv.org/abs/0911.0177
M. Moksud Alam, “Kaluza-Klein Cosmological Models with Barotropic Fluid Distribution,” Phys. & Astron. Int. J. 1(3) (2017). https://doi.org/10.15406/paij.2017.01.00018
G. P. Singh, B. K. Bishi, and P. K. Sahoo, “Scalar field and time varying cosmological constant in f (R, T ) gravity for Bianchi type-I universe,” Chin. J. Phys. 54(2), 244–255 (2016). https://doi.org/10.1016/j.cjph.2016.04.010
R. K. Tiwari, F. Rahaman, and S. Ray, “Five Dimensional Cosmological Models in General Relativity,” Int. J. Theor. Phys. 49(10), 2348–2357 (2010). https://doi.org/10.1007/s10773-010-0421-3
S. K. Tripathy, B. Mishra, S. Ray, and R. Sengupta, “Bouncing universe models in an extended gravity theory,” Chin. J. Phys. 71, 610–622 (2021). https://doi.org/10.1016/j.cjph.2021.03.026
H. Farajollahi, M. Setare, F. Milani, and F. Tayebi, “Cosmic dynamics in F(R,ϕ) gravity,” Gen. Relativ. Gravit. 43(6), 1657–1669 (2011). https://doi.org/10.1007/s10714-011-1148-z
E. Aydiner, I. Basaran-Öz, T. Dereli, and M. Sarisaman, “Late time transition of Universe and the hybrid scale factor,” Eur. Phys. J. C 82(1) (2022). https://doi.org/10.1140/epjc/s10052-022-09996-2
A. Pradhan, B. Saha, and V. Rikhvitsky, “Bianchi type-I transit cosmological models with time dependent gravitational and cosmological constants: reexamined,” Indian J. Phys. 89(5), 503–513 (2014). https://doi.org/10.1007/s12648-014-0612-5
S. Kotambkar, G. P. Singh, and R. Kelkar, “Bulk Viscous Anisotropic Cosmological Models with Dynamical Cosmological Parameters G and ∧,” Nat. Sci. 07(04), 179–189 (2015). https://doi.org/10.4236/ns.2015.74021
A. Pradhan, A. K. Pandey, and R. K. Mishra, “Bianchi type-I transit cosmological models with time dependent gravitational and cosmological constants,” Indian J. Phys. 88(7), 757–765 (2014). https://doi.org/10.1007/s12648-014-0472-z
B. Saha, V. Rikhvitsky, and A. Pradhan, “Bianchi type-I cosmological models with time dependent gravitational and cosmological constants: An alternative approach,” Rom. Journ. Phys. 60(1-2), 3-14 (2015). https://rjp.nipne.ro/2015_60_1-2/RomJPhys.60.p3.pdf
S. Ray, U. Mukhopadhyay, and S.B.D. Choudhury, “Dark energy models with a time-dependent gravitational constant,” Int. J. Mod. Phys. D 16(11), 1791–1802 (2007). https://doi.org/10.1142/s0218271807011097
S. Ray, F. Rahaman, U. Mukhopadhyay, and R. Sarkar, “Variable Equation of State for Generalized Dark Energy Model,” Int. J. Theor. Phys. 50(9), 2687–2696 (2011). https://doi.org/10.1007/s10773-011-0766-2
M. Tegmark, M. R. Blanton, M. A. Strauss, F. Hoyle, D. Schlegel, R. Scoccimarro, M. S. Vogeley, et al., “The Three‐Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey,” Astrophys. J. 606(2), 702–740 (2004). https://doi.org/10.1086/382125
A. Pradhan, and H. Amirhashchi, “Dark energy model in anisotropic Bianchi type-III space-time with variable EoS parameter," Astrophys. Space Sci. 332(2), 441-448 (2010). https://doi.org/10.1007/s10509-010-0539-z
V. M. Zhuravlev, “Two-component cosmological models with a variable equation of state of matter and with thermal equilibrium of components,” J. Exp. Theor. Phys. 93(5), 903-919 (2001). https://doi.org/10.1134/1.1427102
P. J. E. Peebles, and B. Ratra, “The cosmological constant and dark energy," Rev. Mod. Phys. 75(2), 559–606 (2003). https://doi.org/10.1103/revmodphys.75.559
J. Kujat, A. M. Linn, R. J. Scherrer, and D. H. Weinberg, “Prospects for Determining the Equation of State of the Dark Energy: What Can Be Learned from Multiple Observables?” Astrophys. J. 572(1), 1-14 (2002). https://doi.org/10.1086/340230
M. Bartelmann, K. Dolag, F. Perrotta, C. Baccigalupi, L. Moscardini, M. Meneghetti, and G. Tormen, “Evolution of dark-matter haloes in a variety of dark-energy cosmologies,” New Astron. Rev. 49(2-6), 199-203 (2005). https://doi.org/10.1016/j.newar.2005.01.014
Copyright (c) 2023 Sudipto Roy, Asmita Das, Anwesha Dey, Debolina Biswas, Sudipto Saha Roy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).