Impact of Crystallite Size on Structural, Optical and Magnetic Characteristics of La0.7Sr0.15Ca0.15MnO3 Nanocrystalline
Abstract
Nanocrystalline La0.7Sr0.15Ca0.15MnO3 (LSCMO) manganites were prepared by the combustion process and heated to various annealing temperatures (TA) to get various sized crystallites. The X-ray diffraction (XRD) patterns provided evidence that a Rhombohedral structure with space group was formed. Additionally, an increase in the size of the crystallites was observed, from 15.64 to 36.78nm, as the temperature (TA) increased from 700℃ to 1300℃. The FESEM micrographs revealed that homogeneous with porosity. The FTIR spectra showed five absorption peaks. The Optical energy gap of LSCMO nanocrystalline is decreased from 3.51 to 3.28 eV as annealed temperature raised, reveals that the LSCMO nanoparticles are semiconductor in nature. Room temperature Raman spectra of LSCMO nanoparticles demonstrate a notable reliance on annealing temperature. When the Raman modes were analysed with respect to TA, it was observed that the Raman vibrational phonon mode below 200cm-1 (A1g) and four modes (Eg) in the range 200-800cm-1 displayed significant displacements and widening, which were associated with oxygen sublattice distortion. Considerable changes were observed in both the intensity and full width half maximum (FWHM) of the five Raman modes as the annealing temperature increased. Magnetic behaviour using M-H loop at room temperature were measured by the Vibrating sample magnetometer revealed that gradation of saturation magnetization as the function of annealing temperature. Hence there is a remarkable crystallite size effect on optical and magnetic properties of LSCMO nanocrystallites.
Downloads
References
V. Franco, J.S. Blazqee, J.J. Ipus, J.Y. La, L.M. Moreno, and A. Conde, Prog. Mater, Sci. 93, 112 (2018), https://doi.org/10.1016/j.pm atsci.2017.10.005
V.K. Pecharsky, and K.A. Gschneidner Jr, J. Magn. Mag. Mater. 200, 44 (1999), http://doi.org/10.1016/S0304-8853(99)00397-2
T.D. Thanh, L.H. Nguyen, D.H. Manh, N.V. Chien, P.T. Phong, N.V. Khiem, L.V. Hong, and N.X. Phuc, Physica B: Condensed Matter. 407, 145 (2012), https://doi.org/10.1016/j.physb.2011.10.006
A. Gaur, and G.D. Varma, J Phys: Condens Matter. 18, 8837 (2006), http://dx.doi.org/10.1088/0953-8984/18/39/014
S. Zhao, X.-J. Yue, and X. Liu, Ceram. Int. 43, 13240 (2017), http://dx.doi.org/10.1016/j.ceramint.2017.07.021
U. Shankar, and A.K. Singh, The Journal of Physical Chemistry C, 119, 28620 (2015), http://dx.doi.org/10.1021/acs.jpcc.5b08381
W. Xia, L. Li, H. Wu, P. Xue, and X. Zhu, Ceram Int. 43, 3274 (2017), http://dx.doi.org/10.1016/j.ceramint.2016.11.160
N. Zaidi, S. Mnefgui, A. Dhahri, J. Dhahri, and E.K. Hlil, J. Alloys Compd. 616, 378 (2014), https://doi.org/10.1016/j.jallcom.2014.07.113
H. Nakatsugawa, M. Saito, and Y. Okamoto, Journal of Electronic materials, 46, 3262 (2017), http://dx.doi.org/10.1007/s11664-017-5366-3
Y. Tokura, Reports on Progress in Physics. 69, 797 (2006), http://dx.doi.org/10.1088/0034-4885/69/3/R06
C.B. Larsen, S. Samothrakitis, A.D. Fortes, A.O. Ayas, M. Akyol, A. Ekicibil, and M. Laver, Journal of Magnetism and Magnetic Materials, 498, 166193 (2020), http://dx.doi.org/10.1016/j.jmmm.2019.166192
M. K. Verma, N.D. Sharma, S. Sharma, N. Choudhary, and D, Singh, Materials Research Bulletin.125, 10813(2020), http://dx.doi.org/10.1016/j.materresbull.2020.110813
S. Biswas, and S. Keshri, Journal of Materials Science: Materials in Electronics. 31, 21896(2020). http://dx.doi.org/10.1007/s10854-020-04694-9
L. Joshi, S. Rajput, and S. Keshri, Phase Transitions. 83, 482 (2010), http://dx.doi.org/10.1080/01411594.2010.492466
R.V. Helmholt, J. Wecker, and B. Holzapfel, Phys. Rev. Lett. 71, 2331 (1993), https://doi.org/10.1103/PhysRevLett.71.2331
K. Chahara, T. Ohno, and M. Kasai, Appl. Phys. Lett. 63, 1990 (1993), https://doi.org/10.1063/1.110624
S Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R.Ramesh, and L.H. Chen, Science, 264, 413 (1994), https://doi.org/10.1126/science.264.5157.413
D.H. Manh, P.T. Phong, T.D. Thanh, D.N.H. Nam, L.V. Hong, and N.X. Phuc, J Alloy Compd. 509, 1373 (2011), https://doi.org/10.1016/j.jallcom.2010.10.104
K. Navin, R. Kurchania, Ceram Int. 44, 4973 (2018), http://dx.doi.org/10.1016/j.ceramint.2017.12.091
M. Oumezzine, O. Pena, T. Guizouarn, R. Lebullenger, and M. Oumezzine, J. Magn. Magn. Mater. 324, 2821 (2012), http://dx.doi.org/10.1016/j.jmmm.2012.04.017
M. Rosic, L. Kljaljevic, D. Jordanov, M. Stoiljikovic, V. Kusigerski, V. Spasojevic, and B. Matovic, Ceram. Int. 41, 14964 (2015), http://dx.doi.org/10.1016/j.ceramint.2015.08.041
R. Von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Latt. 71(14), 2331 (1993), https://doi.org/10.1103/PhysRevLett.71.2331
M. Yamanaka, and N. Nagaosa, Phys B, 28, 237 (1997), https://doi.org/10.1016/S0921-4526(97)00034-3
Q.L. Fang, J.M. Zhang, and K.W. Xu, J. Magn. Magn. Mater. 349,104 (2014), https://doi.org/10.1016/j.jmmm.2013.08.030
A. Sundaresan, J.L. Tholence, A. Maignan, B. Raveau, E. Suard, and P. Border, J. Magn. Magn. Mater. 226-230(1), 777 (2001), https://doi.org/10.1016/S0304-8853(00)01323-8
G. Alejandro, M. Tovar, A. Butera, A. Caneiro, M.T. Causa, F. Prado, and R. Sánchez, Phys. B. 284-288(2), 1408 (2000), https://doi.org/10.1016/S0921-4526(99)02571-5
G.C. Rout, Nilima Parhi, and S.N. Behera, Phys. B. 404, 2315 (2009), https://doi.org/10.1016/j.physb.2009.04.036
M.H. Phan, S.C. Yu, and N.H. Hur, Appl. Phys. Lett. 86, 072504 (2005), https://doi.org/10.1063/1.1867564
W. Xia, K. Leng, Q. Tang, L. Yang, Y. Xie, Z. Wu, and X. Zhu, AIP Advances, 11, 035007 (2021). https://doi.org/10.1063/5.0036723
N.D. Lipham, G.M. Tsoi, and L.E. Wenger, IEEE Transactions on Magnetics, 43, 3088 (2007). https://doi.org/10.1109/TMAG.2007.893850
H. Wang, Z. Zhao, C.M. Xu, and J. Liu, Catal. Lett. 102, 251 (2005). http://dx.doi.org/10.1007/s10562-005-5864-4
W. Xia, H. Wu, P. Xue, and X. Zhu, Nanoscale Res. Lett. 13, 135 (2018). https://doi.org/10.1186/s11671-018-2553-y
S. Kumar, G. D. Dwivedi, S. Kumar, R. B. Mathur, U. Saxena, A. K. Ghosh, A. G. Joshi, H. D. Yang, and S. Chatterjee, Dalton Trans. 44, 3109 (2015). https://doi.org/10.1039/C4DT03452J
M.P. Reddy, R.A. Shakoor, and A.M.A. Mohamed, Mater. Chem. Phys. 177, 346 (2016), https://doi.org/10.1016/j.matchemphys.2016.04.038
Y. Liu, T. Sun, G. Dong, S. Zhang, K. Chu, X. Pu, H. Li, and X. Liu, Ceram. Int. 45, 17467 (2019), https://doi.org/10.1016/j.ceramint.2019.05.308
H.M. Pathan, J.D. Desai, and C.D. Lokhande, Appl. Surf. Science, 202, 47 (2002), https://doi.org/10.1016/S0169-4332(02)00843-7
M. Srivastava, A.K. Ojha, S. Chaubey, and A. Materny, Journal of Alloys and Compounds, 481,515 (2009), https://doi.org/10.1016/j.jallcom.2009.03.027
U. Kumar, D. Yadav, A.K Thakur, K.K. Srivastav, and S. Upadhyay, J. Therm. Anal. Calorim. 135, 1987 (2018), https://doi.org/10.1007/s10973-018-7432-3
F.R. Afje, and M. Ehsani, Materials Research Express, 5, 045012 (2018), https://doi.org/10.1088/2053-1591/aaba51
T.S. Moss, Proc. Phys. Soc. London, Sect. B, 63, 167 (1950), https://doi.org/10.1088/0370-1301/63/3/302
T.S. Moss, Phys. Status Solidi B, 131, 415 (1985), https://doi.org/10.1016/1350-4495(94)90026-4
P. Herve, and L.K.J. Vandamme, Infrared Phys. Technol. 35, 609 (1994), https://doi.org/10.1016/1350-4495(94)90026-4
W. Wang, and S.P. Jiang, Solid State Ionics. 177, 1361 (2006), http://hdl.handle.net/20.500.11937/10875
A.O. Turky, M.M. Rashid, A.M. Hassan, E.M. Elnaggard, and M. Bechelanyc, Phys. Chem. Chem, Phys. 19, 6878 (2017), http://doi.org/10.1039/c6cp07333f
V. Dediu, C. Ferdeghini, F.C. Matacotta, P. Nozar, and G. Ruani, Phys. Rev. Lett. 84, 4489 (2000). https://doi.org/10.1103/PhysRevLett.84.4489
L.M. Carr´on, A. de Andr´es, M.J. Mart´ınez-Lope, M.T. Casais, and J.A. Alonso, Phys. Rev. B. 66, 174303 (2002). https://doi.org/10.1103/PhysRevB.66.174303
X. Kong, J. Wang, Z. Zou, F. Long, and Y. Wu, J. Supercond. Novel Magn. 31, 373 (2018), https://doi.org/10.1007/s10948-017-4217-z
P.T. Phong, S.J. Jang, B.T. Huy, Y.I. Lee, and I.J. Lee, J. Mater. Sci. Mater. Electron. 24, 2292 (2013), https://doi.org/10.1007/s10854-013-1092-7
N.V. Minh, J. Phys. Conf. Ser. 187, 012011 (2009), https://doi.org/10.1088/1742-6596/187/1/012011
A. Dubroka, J. Humlíček, M.V. Abrashev, Z.V. Popović, F. Sapiña, and A. Cantarero, Phys. Rev. B 73, 224401 (2006). https://doi.org/10.1103/PhysRevB.73.224401
K. Daoudi, H. Alawadhi, S. El Helali, M. Boudard, Z. Othmen, M. Gaidi, M. Oueslati, and T. Tsuchiya, J. Phys. D: Appl. Phys. 50, 395305 (2017), https://doi.org/10.1088/1361-6463/aa814f
I. Krad, O. Bidault, N. Geoffroy, and M.E.L. Maaoui, Ceram. Int. 42, 3751 (2016). http://dx.doi.org/10.1016/j.ceramint.2015.10.158
A.E. Pantoja, H.J. Trodahl, A. Fainstein, R.G. Pregliasco, R.G. Buckely, G. Balakrishnan, M.R. Lees, and D. Mck. Paul, Phys. Rev. B. 63, 132406 (2001). http://dx.doi.org/10.1103/PhysRevB.63.132406
Copyright (c) 2023 Mohd Abdul Shukur, Katrapally Vijaya Kumar, Gade Narsinga Rao
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).