Impact of Crystallite Size on Structural, Optical and Magnetic Characteristics of La0.7Sr0.15Ca0.15MnO3 Nanocrystalline

  • Mohd Abdul Shukur Department of Physics, JNTUH University College of Engineering Rajanna Siricilla, Agraharam, Telangana, India; Department of Physics, SRR Government Arts & Science College (Autonomous), Karimnagar, Telangana, India https://orcid.org/0000-0003-3506-412X
  • Katrapally Vijaya Kumar Department of Physics, JNTUH University College of Engineering Rajanna Siricilla, Agraharam, Telangana, India https://orcid.org/0000-0001-6160-8632
  • Gade Narsinga Rao Department of Physics. Marri Laxman Reddy Institute of Technology and Management, Dundigal, Hyderabad, Telangana, India https://orcid.org/0000-0002-8229-8992
Keywords: Crystallite size, Optical band gap, FTIR spectra, M-H loop, Raman vibrational phonons

Abstract

Nanocrystalline La0.7Sr0.15Ca0.15MnO3 (LSCMO) manganites were prepared by the combustion process and heated to various annealing temperatures (TA) to get various sized crystallites. The X-ray diffraction (XRD) patterns provided evidence that a Rhombohedral structure with space group  was formed. Additionally, an increase in the size of the crystallites was observed, from 15.64 to 36.78nm, as the temperature (TA) increased from 700℃ to 1300℃. The FESEM micrographs revealed that homogeneous with porosity. The FTIR spectra showed five absorption peaks. The Optical energy gap of LSCMO nanocrystalline is decreased from 3.51 to 3.28 eV as annealed temperature raised, reveals that the LSCMO nanoparticles are semiconductor in nature. Room temperature Raman spectra of LSCMO nanoparticles demonstrate a notable reliance on annealing temperature. When the Raman modes were analysed with respect to TA, it was observed that the Raman vibrational phonon mode below 200cm-1 (A1g) and four modes (Eg) in the range 200-800cm-1 displayed significant displacements and widening, which were associated with oxygen sublattice distortion. Considerable changes were observed in both the intensity and full width half maximum (FWHM) of the five Raman modes as the annealing temperature increased. Magnetic behaviour using M-H loop at room temperature were measured by the Vibrating sample magnetometer revealed that gradation of saturation magnetization as the function of annealing temperature. Hence there is a remarkable crystallite size effect on optical and magnetic properties of LSCMO nanocrystallites.

Downloads

Download data is not yet available.

References

V. Franco, J.S. Blazqee, J.J. Ipus, J.Y. La, L.M. Moreno, and A. Conde, Prog. Mater, Sci. 93, 112 (2018), https://doi.org/10.1016/j.pm atsci.2017.10.005

V.K. Pecharsky, and K.A. Gschneidner Jr, J. Magn. Mag. Mater. 200, 44 (1999), http://doi.org/10.1016/S0304-8853(99)00397-2

T.D. Thanh, L.H. Nguyen, D.H. Manh, N.V. Chien, P.T. Phong, N.V. Khiem, L.V. Hong, and N.X. Phuc, Physica B: Condensed Matter. 407, 145 (2012), https://doi.org/10.1016/j.physb.2011.10.006

A. Gaur, and G.D. Varma, J Phys: Condens Matter. 18, 8837 (2006), http://dx.doi.org/10.1088/0953-8984/18/39/014

S. Zhao, X.-J. Yue, and X. Liu, Ceram. Int. 43, 13240 (2017), http://dx.doi.org/10.1016/j.ceramint.2017.07.021

U. Shankar, and A.K. Singh, The Journal of Physical Chemistry C, 119, 28620 (2015), http://dx.doi.org/10.1021/acs.jpcc.5b08381

W. Xia, L. Li, H. Wu, P. Xue, and X. Zhu, Ceram Int. 43, 3274 (2017), http://dx.doi.org/10.1016/j.ceramint.2016.11.160

N. Zaidi, S. Mnefgui, A. Dhahri, J. Dhahri, and E.K. Hlil, J. Alloys Compd. 616, 378 (2014), https://doi.org/10.1016/j.jallcom.2014.07.113

H. Nakatsugawa, M. Saito, and Y. Okamoto, Journal of Electronic materials, 46, 3262 (2017), http://dx.doi.org/10.1007/s11664-017-5366-3

Y. Tokura, Reports on Progress in Physics. 69, 797 (2006), http://dx.doi.org/10.1088/0034-4885/69/3/R06

C.B. Larsen, S. Samothrakitis, A.D. Fortes, A.O. Ayas, M. Akyol, A. Ekicibil, and M. Laver, Journal of Magnetism and Magnetic Materials, 498, 166193 (2020), http://dx.doi.org/10.1016/j.jmmm.2019.166192

M. K. Verma, N.D. Sharma, S. Sharma, N. Choudhary, and D, Singh, Materials Research Bulletin.125, 10813(2020), http://dx.doi.org/10.1016/j.materresbull.2020.110813

S. Biswas, and S. Keshri, Journal of Materials Science: Materials in Electronics. 31, 21896(2020). http://dx.doi.org/10.1007/s10854-020-04694-9

L. Joshi, S. Rajput, and S. Keshri, Phase Transitions. 83, 482 (2010), http://dx.doi.org/10.1080/01411594.2010.492466

R.V. Helmholt, J. Wecker, and B. Holzapfel, Phys. Rev. Lett. 71, 2331 (1993), https://doi.org/10.1103/PhysRevLett.71.2331

K. Chahara, T. Ohno, and M. Kasai, Appl. Phys. Lett. 63, 1990 (1993), https://doi.org/10.1063/1.110624

S Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R.Ramesh, and L.H. Chen, Science, 264, 413 (1994), https://doi.org/10.1126/science.264.5157.413

D.H. Manh, P.T. Phong, T.D. Thanh, D.N.H. Nam, L.V. Hong, and N.X. Phuc, J Alloy Compd. 509, 1373 (2011), https://doi.org/10.1016/j.jallcom.2010.10.104

K. Navin, R. Kurchania, Ceram Int. 44, 4973 (2018), http://dx.doi.org/10.1016/j.ceramint.2017.12.091

M. Oumezzine, O. Pena, T. Guizouarn, R. Lebullenger, and M. Oumezzine, J. Magn. Magn. Mater. 324, 2821 (2012), http://dx.doi.org/10.1016/j.jmmm.2012.04.017

M. Rosic, L. Kljaljevic, D. Jordanov, M. Stoiljikovic, V. Kusigerski, V. Spasojevic, and B. Matovic, Ceram. Int. 41, 14964 (2015), http://dx.doi.org/10.1016/j.ceramint.2015.08.041

R. Von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Latt. 71(14), 2331 (1993), https://doi.org/10.1103/PhysRevLett.71.2331

M. Yamanaka, and N. Nagaosa, Phys B, 28, 237 (1997), https://doi.org/10.1016/S0921-4526(97)00034-3

Q.L. Fang, J.M. Zhang, and K.W. Xu, J. Magn. Magn. Mater. 349,104 (2014), https://doi.org/10.1016/j.jmmm.2013.08.030

A. Sundaresan, J.L. Tholence, A. Maignan, B. Raveau, E. Suard, and P. Border, J. Magn. Magn. Mater. 226-230(1), 777 (2001), https://doi.org/10.1016/S0304-8853(00)01323-8

G. Alejandro, M. Tovar, A. Butera, A. Caneiro, M.T. Causa, F. Prado, and R. Sánchez, Phys. B. 284-288(2), 1408 (2000), https://doi.org/10.1016/S0921-4526(99)02571-5

G.C. Rout, Nilima Parhi, and S.N. Behera, Phys. B. 404, 2315 (2009), https://doi.org/10.1016/j.physb.2009.04.036

M.H. Phan, S.C. Yu, and N.H. Hur, Appl. Phys. Lett. 86, 072504 (2005), https://doi.org/10.1063/1.1867564

W. Xia, K. Leng, Q. Tang, L. Yang, Y. Xie, Z. Wu, and X. Zhu, AIP Advances, 11, 035007 (2021). https://doi.org/10.1063/5.0036723

N.D. Lipham, G.M. Tsoi, and L.E. Wenger, IEEE Transactions on Magnetics, 43, 3088 (2007). https://doi.org/10.1109/TMAG.2007.893850

H. Wang, Z. Zhao, C.M. Xu, and J. Liu, Catal. Lett. 102, 251 (2005). http://dx.doi.org/10.1007/s10562-005-5864-4

W. Xia, H. Wu, P. Xue, and X. Zhu, Nanoscale Res. Lett. 13, 135 (2018). https://doi.org/10.1186/s11671-018-2553-y

S. Kumar, G. D. Dwivedi, S. Kumar, R. B. Mathur, U. Saxena, A. K. Ghosh, A. G. Joshi, H. D. Yang, and S. Chatterjee, Dalton Trans. 44, 3109 (2015). https://doi.org/10.1039/C4DT03452J

M.P. Reddy, R.A. Shakoor, and A.M.A. Mohamed, Mater. Chem. Phys. 177, 346 (2016), https://doi.org/10.1016/j.matchemphys.2016.04.038

Y. Liu, T. Sun, G. Dong, S. Zhang, K. Chu, X. Pu, H. Li, and X. Liu, Ceram. Int. 45, 17467 (2019), https://doi.org/10.1016/j.ceramint.2019.05.308

H.M. Pathan, J.D. Desai, and C.D. Lokhande, Appl. Surf. Science, 202, 47 (2002), https://doi.org/10.1016/S0169-4332(02)00843-7

M. Srivastava, A.K. Ojha, S. Chaubey, and A. Materny, Journal of Alloys and Compounds, 481,515 (2009), https://doi.org/10.1016/j.jallcom.2009.03.027

U. Kumar, D. Yadav, A.K Thakur, K.K. Srivastav, and S. Upadhyay, J. Therm. Anal. Calorim. 135, 1987 (2018), https://doi.org/10.1007/s10973-018-7432-3

F.R. Afje, and M. Ehsani, Materials Research Express, 5, 045012 (2018), https://doi.org/10.1088/2053-1591/aaba51

T.S. Moss, Proc. Phys. Soc. London, Sect. B, 63, 167 (1950), https://doi.org/10.1088/0370-1301/63/3/302

T.S. Moss, Phys. Status Solidi B, 131, 415 (1985), https://doi.org/10.1016/1350-4495(94)90026-4

P. Herve, and L.K.J. Vandamme, Infrared Phys. Technol. 35, 609 (1994), https://doi.org/10.1016/1350-4495(94)90026-4

W. Wang, and S.P. Jiang, Solid State Ionics. 177, 1361 (2006), http://hdl.handle.net/20.500.11937/10875

A.O. Turky, M.M. Rashid, A.M. Hassan, E.M. Elnaggard, and M. Bechelanyc, Phys. Chem. Chem, Phys. 19, 6878 (2017), http://doi.org/10.1039/c6cp07333f

V. Dediu, C. Ferdeghini, F.C. Matacotta, P. Nozar, and G. Ruani, Phys. Rev. Lett. 84, 4489 (2000). https://doi.org/10.1103/PhysRevLett.84.4489

L.M. Carr´on, A. de Andr´es, M.J. Mart´ınez-Lope, M.T. Casais, and J.A. Alonso, Phys. Rev. B. 66, 174303 (2002). https://doi.org/10.1103/PhysRevB.66.174303

X. Kong, J. Wang, Z. Zou, F. Long, and Y. Wu, J. Supercond. Novel Magn. 31, 373 (2018), https://doi.org/10.1007/s10948-017-4217-z

P.T. Phong, S.J. Jang, B.T. Huy, Y.I. Lee, and I.J. Lee, J. Mater. Sci. Mater. Electron. 24, 2292 (2013), https://doi.org/10.1007/s10854-013-1092-7

N.V. Minh, J. Phys. Conf. Ser. 187, 012011 (2009), https://doi.org/10.1088/1742-6596/187/1/012011

A. Dubroka, J. Humlíček, M.V. Abrashev, Z.V. Popović, F. Sapiña, and A. Cantarero, Phys. Rev. B 73, 224401 (2006). https://doi.org/10.1103/PhysRevB.73.224401

K. Daoudi, H. Alawadhi, S. El Helali, M. Boudard, Z. Othmen, M. Gaidi, M. Oueslati, and T. Tsuchiya, J. Phys. D: Appl. Phys. 50, 395305 (2017), https://doi.org/10.1088/1361-6463/aa814f

I. Krad, O. Bidault, N. Geoffroy, and M.E.L. Maaoui, Ceram. Int. 42, 3751 (2016). http://dx.doi.org/10.1016/j.ceramint.2015.10.158

A.E. Pantoja, H.J. Trodahl, A. Fainstein, R.G. Pregliasco, R.G. Buckely, G. Balakrishnan, M.R. Lees, and D. Mck. Paul, Phys. Rev. B. 63, 132406 (2001). http://dx.doi.org/10.1103/PhysRevB.63.132406

Published
2023-09-04
Cited
How to Cite
Shukur, M. A., Kumar, K. V., & Rao, G. N. (2023). Impact of Crystallite Size on Structural, Optical and Magnetic Characteristics of La0.7Sr0.15Ca0.15MnO3 Nanocrystalline. East European Journal of Physics, (3), 370-379. https://doi.org/10.26565/2312-4334-2023-3-39