Effect of Calcination Temperature on Structural and Optical Properties of Nickel Aluminate Nanoparticles
Abstract
Nickel aluminate (NiAl2O4) nanoparticles were synthesized using sol-gel method with auto-combustion. The prepared nanoparticles were made into four parts and calcinated at 700, 900, 1100 and 13000C and taken up for the present study. The taken-up nanoparticles were characterized using powder X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersion X-Ray Spectroscopy (EDS), Fourier Transform and Infrared (FT-IR) spectroscopy and UV-Vis spectroscopy techniques. The X-ray diffraction patterns confirmed the spinel structure and Fd3m space group. Scherrer formula was used to calculate the crystallite size and found in the range 5.78 to 20.55 nm whereas the lattice parameter was found in the range of 8.039 to 8.342 Å. The average grain size was found in the range 142.80 to 187.37 nm whereas interplanar spacing was found in the range of 2.100 to 2.479 Å. The FTIR spectroscopy showed six absorption bands in the range 400 to 3450 cm-1 and confirmed the spinel structure. The optical band gap (Eg) was decreased with calcination temperature and found in the range 4.2129-4.3115eV.
Downloads
References
Z. Yin, C. Huang, B. Zou, H. Liu, H. Zhu, and J. Wang, Ceramic International, 40(2), 2809 (2014). https://doi.org/10.1016/j.ceramint.2013.10.033
J.B. Wachtman, Mechanical Properties of Ceramics, (Wiley, New York, 1996)
K. Konopka, M. Maj, and K.J. Kurzydłowski, Mater. Charact. 51, 335 (2003). https://doi.org/10.1016/j.matchar.2004.02.002
C.C. Huang, C.C. Mo, T.H. Hsiao, G.M. Chen, S.H. Lu, Y.H. Tai, H.H. Hsu, et al., Results in Materials, 8, 100150 (2020). https://doi.org/10.1016/j.rinma.2020.100150
D.C. Kim, and S.K. Ihm, Env. Sci. Tech. 35(1), 222 (2001). https://doi.org/10.1021/es001098k
C. Chaves, S.J.G. Lima, R.C.M.U. Araujo, M.A. Maurera, E. Longo, P.S. Pizani, L.G.P. Simões, et al., J. Solid-State Chem. 179, 985 (2006). https://doi.org/10.1016/j.jssc.2005.12.018
K. Ahn, B.W. Wessels, and S. Sampath, Sensor Actuators B, 107(1), 342 (2005). https://doi.org/10.1016/j.snb.2004.10.020
P. Lavela, J.L. Tirado, and C.V. Abarca, Electrochimica Acta, 52(28), 7986 (2007). https://doi.org/10.1016/j.electacta.2007.06.066
Y. Fan, X. Lu, H. Zhang, L. Zhao, J. Chen, and C. Sun, Environ. Sci. Technol. 44(8), 3079 (2010). https://doi.org/10.1021/es9031437
S. Chen, Y. Wu, P. Cui, W. Chu, X. Chen, and Z. Wu, J. Phys. Chem. C, 117(47), 25019 (2013). https://doi.org/10.1021/jp404984y
J. Ma, B. Zhao, H. Xiang, F.Z. Dai, Y. Liu, R. Zhang, and Y. Zhou, J. Adv. Cer. 11, 754 (2022). https://doi.org/10.1007/s40145-022-0569-3
S. Pokhrel, B. Jeyaraj, and K.S. Nagaraja, Mater. Lettrs. 57(22-23), 3543 (2003). https://doi.org/10.1016/S0167-577X(03)00122-8
C. Peng, and L. Gao, J. Amer. Cer. Soc. 91(7), 2388 (2008). https://doi.org/10.1111/j.1551-2916.2008.02417.x
R.J. Harrison, and A. Putnis, Surv. in Geophys. 19, 461 (1998). https://doi.org/10.1023/A:1006535023784
Z.V. Marinkovic, L. Mancic, P. Vulic, and O. Milosevic, J. Euro. Cer. Soc. 25, 2081 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.085
Yunasfi, A. Mulyawan, Mashadi, D.S. Winatapura, and A.A. Wisnu, Applied Phys. A, 127, 763 (2021). https://doi.org/10.1007/s00339-021-04907-w
X. Niu, W. Du, and W. Du, Sensor Actuators B, 99, 405 (2004). https://doi.org/10.1016/j.snb.2003.12.007
C. Jagadeeshwaran, and R. Murugaraj, J. Supercondu. and Novel Magn. 33, 1765 (2020). https://doi.org/10.1007/s10948-020-05427-z
K.R. Krishna, K.V. Kumar, and D. Ravinder, Adv. in Mater. Phys. and Chem. 2(3), 185 (2012). http://dx.doi.org/10.4236/ampc.2012.23028
K.V. Kumar, and C.H.S. Chakra, Asian J. of Phys. and Chem. Sci. 2(2), 1 (2017). https://doi.org/10.9734/AJOPACS/2017/34683
K. Vijaya Kumar, R. Sridhar, D. Ravinder, Int. J. of Nanopart. Res., 2(6), 1 (2018). https://escipub.com/Articles/IJONR/IJNR-2018-01-0302
L.J. Berchmans, R.K. Selvan, and C.O. Augustin, Mater. Lettrs. 58(12), 1928 (2004). https://doi.org/10.1016/j.matlet.2003.12.008
Z. Yue, J. Zhou, L. Li, X. Wang, and Z. Gui, Mater. Sci. and Eng. B, 86(1), 64 (2001). https://doi.org/10.1016/S0921-5107(01)00660-2
N.M. Deraz, Int. J. Electrochem. Sci. 8, 5203 (2013). http://electrochemsci.org/papers/vol8/80405203.pdf
A. Yamakawa, M. Hashiba, and Y. Nurishi, J. Mater. Sci. 24, 1491 (1989). https://doi.org/10.1007/BF02397091
N.M. Deraz, Ceramic International, 38, 511 (2012). https://doi.org/10.1016/j.ceramint.2011.07.036
N.M. Deraz, Int. J. Electrochem. Sci. 7, 4596 (2012). http://www.electrochemsci.org/papers/vol7/7054596.pdf
A. Becheri, M. Durr, P. Lo Nostro, and P. Baglioni, J. Nanopart. Res. 10, 679 (2008). https://doi.org/10.1007/s11051-007-9318-3
J. Jacob, and M.A. Khadar, J. Appl. Phys. 107(11), 114310 (2010). https://doi.org/10.1063/1.3429202
Y.B. Kannan, R. Saravanan, N. Srinivasan, and I. Ismail, J. Magn. and Magn. Mat. 423, 217 (2017). https://doi.org/10.1016/j.jmmm.2016.09.038
D. Venkatesh, K.V. Ramesh, and C.V.S.S. Sastry, AIP Conference Proceedings, 1859, 020035 (2017). https://doi.org/10.1063/1.4990188
F. Meyer, R. Hempelmann, S. Mathurband, and M. Veith, J. Mater. Chem. 9, 1755 (1999). https://doi.org/10.1039/A900014C
Giedrė Nenartavičienė, Darius Jasaitis, and Aivaras Kareiva, Acta Chim. Slov. 51, 661 (2004). https://acta-arhiv.chem-soc.si/51/51-4-661.pdf
M. Chroma, J. Pinkas, I. Pakutinskiene, A. Beganskiene, and A. Kareiva, Ceramic International, 31(8), 1123 (2005). https://doi.org/10.1016/j.ceramint.2004.11.012
J.J. Vijaya, L.J. Kennedy, G. Sekaran, and K.S. Nagaraja, Materials Research Bulletin, 43, 473 (2008). https://doi.org/10.1016/j.materresbull.2007.02.030
S. Angappan, L.J. Bechermans, and C.O. Augustin, Mater. Lett. 58, 2283 (2004). https://doi.org/10.1016/j.matlet.2004.01.033
Z. Chen, E. Shi, W. Li, Y. Zheng, N. Wu, and W. Zhong, J. Am. Ceram. Soc. 85, 2949 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00561.x
M. Llusar, A. Forés, J.A. Badenes, J. Calbo, M.A. Tena, and G. Monrós, J. Eur. Ceram. Soc. 21(8), 1121 (2001). https://doi.org/10.1016/S0955-2219(00)00295-8
A.A. Verberckmoes, B.M. Weckhuysen, and R.A. Schoonheydt, Micropor. Mesopor. Mater. 22(1-3), 165 (1998). https://doi.org/10.1016/S1387-1811(98)00091-2
F. Matteucci, G. Cruciani, M. Dondi, G. Gasparotto, and D.M. Tobaldi, J. Solid State Chem. 180(11), 3196 (2007). https://doi.org/10.1016/j.jssc.2007.08.029
P. Jeevanandam, Yu. Koltypin, and A. Gedanken, Mater. Sci. Eng. B, 90(1-2), 125 (2002). https://doi.org/10.1016/S0921-5107(01)00928-X
M. Jestl, I. Maran, A. Köck, W. Beinsting, and E. Gornik, Opt. Lett. 14(14), 719 (1989). https://doi.org/10.1364/OL.14.000719
A. Rahman, M.S. Charoo, and R. Jayaganthan, Materials Technology Adv. Perf. Mater. 30(3), 1 (2015). https://doi.org/10.1179/1753555714Y.0000000211
S.K. Sampath, D.G. Kanhere, and R. Pandey, J. Phys. Condens. Matter, 11, 3635 (1999). https://doi.org/10.1088/0953-8984/11/18/301
S. Suwanboon, T. Ratana, and T. Ratana, J. Sci. Technol. 4(1), 111 (2007). https://wjst.wu.ac.th/index.php/wjst/article/view/129/111
T. Takagahara, and K. Takeda, Phys. Rev. B, 46 15578 (1992). https://doi.org/10.1103/PhysRevB.46.15578
Citations
Frequency and temperature dependent dielectric behavior of NiCr2O4 spinels synthesized via sol-gel route – Effect of sintering temperature
Kumar Katrapally Vijaya, Siripuram Rajesh, Raju Panthagani, Suresh Madireddy Buchi & Biswas Jhuma (2025) Phase Transitions
Crossref
Effect of Fe3+ ions substitution on electrical and dielectric properties of MgFexCr2-xO4 (x = 0, 0.2, and 0.4 mol%) chromites prepared by solution combustion method
Sahu Yogita & Agrawal Sadhana (2024) Chemical Physics Impact
Crossref
Food-waste-derived hydrochar to a low-cost p-type semiconducting photocatalyst (Zn–Al@HC): multifunctional role in real wastewater treatment and environmental sustainability
Yadav Shraddha, Priyadarshini Monali, Ahmad Azhan, Ghangrekar Makarand M. & Dubey Brajesh K. (2024) Journal of Materials Chemistry A
Crossref
Attractive Investigation of Zinc Chromium Nanoferrite by a Simple Auto-combustion Method
Abdelsalam H. K., Khalafalla Yusuf H. & El-Bassuony Asmaa. A. H. (2025) BioNanoScience
Crossref
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



