Effect of Calcination Temperature on Structural and Optical Properties of Nickel Aluminate Nanoparticles

Keywords: Nickel Aluminate nanoparticles, Sol-Gel Auto-Combustion method, Calcination Temperature, Crystallite size, Grain size, Elemental analysis, IR and UV-Vis spectroscopy


Nickel aluminate (NiAl2O4) nanoparticles were synthesized using sol-gel method with auto-combustion. The prepared nanoparticles were made into four parts and calcinated at 700, 900, 1100 and 13000C and taken up for the present study. The taken-up nanoparticles were characterized using powder X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersion X-Ray Spectroscopy (EDS), Fourier Transform and Infrared (FT-IR) spectroscopy and UV-Vis spectroscopy techniques. The X-ray diffraction patterns confirmed the spinel structure and Fd3m space group. Scherrer formula was used to calculate the crystallite size and found in the range 5.78 to 20.55 nm whereas the lattice parameter was found in the range of 8.039 to 8.342 Å. The average grain size was found in the range 142.80 to 187.37 nm whereas interplanar spacing was found in the range of 2.100 to 2.479 Å. The FTIR spectroscopy showed six absorption bands in the range 400 to 3450 cm-1 and confirmed the spinel structure. The optical band gap (Eg) was decreased with calcination temperature and found in the range 4.2129-4.3115eV.


Download data is not yet available.


Z. Yin, C. Huang, B. Zou, H. Liu, H. Zhu, and J. Wang, Ceramic International, 40(2), 2809 (2014). https://doi.org/10.1016/j.ceramint.2013.10.033

J.B. Wachtman, Mechanical Properties of Ceramics, (Wiley, New York, 1996)

K. Konopka, M. Maj, and K.J. Kurzydłowski, Mater. Charact. 51, 335 (2003). https://doi.org/10.1016/j.matchar.2004.02.002

C.C. Huang, C.C. Mo, T.H. Hsiao, G.M. Chen, S.H. Lu, Y.H. Tai, H.H. Hsu, et al., Results in Materials, 8, 100150 (2020). https://doi.org/10.1016/j.rinma.2020.100150

D.C. Kim, and S.K. Ihm, Env. Sci. Tech. 35(1), 222 (2001). https://doi.org/10.1021/es001098k

C. Chaves, S.J.G. Lima, R.C.M.U. Araujo, M.A. Maurera, E. Longo, P.S. Pizani, L.G.P. Simões, et al., J. Solid-State Chem. 179, 985 (2006). https://doi.org/10.1016/j.jssc.2005.12.018

K. Ahn, B.W. Wessels, and S. Sampath, Sensor Actuators B, 107(1), 342 (2005). https://doi.org/10.1016/j.snb.2004.10.020

P. Lavela, J.L. Tirado, and C.V. Abarca, Electrochimica Acta, 52(28), 7986 (2007). https://doi.org/10.1016/j.electacta.2007.06.066

Y. Fan, X. Lu, H. Zhang, L. Zhao, J. Chen, and C. Sun, Environ. Sci. Technol. 44(8), 3079 (2010). https://doi.org/10.1021/es9031437

S. Chen, Y. Wu, P. Cui, W. Chu, X. Chen, and Z. Wu, J. Phys. Chem. C, 117(47), 25019 (2013). https://doi.org/10.1021/jp404984y

J. Ma, B. Zhao, H. Xiang, F.Z. Dai, Y. Liu, R. Zhang, and Y. Zhou, J. Adv. Cer. 11, 754 (2022). https://doi.org/10.1007/s40145-022-0569-3

S. Pokhrel, B. Jeyaraj, and K.S. Nagaraja, Mater. Lettrs. 57(22-23), 3543 (2003). https://doi.org/10.1016/S0167-577X(03)00122-8

C. Peng, and L. Gao, J. Amer. Cer. Soc. 91(7), 2388 (2008). https://doi.org/10.1111/j.1551-2916.2008.02417.x

R.J. Harrison, and A. Putnis, Surv. in Geophys. 19, 461 (1998). https://doi.org/10.1023/A:1006535023784

Z.V. Marinkovic, L. Mancic, P. Vulic, and O. Milosevic, J. Euro. Cer. Soc. 25, 2081 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.085

Yunasfi, A. Mulyawan, Mashadi, D.S. Winatapura, and A.A. Wisnu, Applied Phys. A, 127, 763 (2021). https://doi.org/10.1007/s00339-021-04907-w

X. Niu, W. Du, and W. Du, Sensor Actuators B, 99, 405 (2004). https://doi.org/10.1016/j.snb.2003.12.007

C. Jagadeeshwaran, and R. Murugaraj, J. Supercondu. and Novel Magn. 33, 1765 (2020). https://doi.org/10.1007/s10948-020-05427-z

K.R. Krishna, K.V. Kumar, and D. Ravinder, Adv. in Mater. Phys. and Chem. 2(3), 185 (2012). http://dx.doi.org/10.4236/ampc.2012.23028

K.V. Kumar, and C.H.S. Chakra, Asian J. of Phys. and Chem. Sci. 2(2), 1 (2017). https://doi.org/10.9734/AJOPACS/2017/34683

K. Vijaya Kumar, R. Sridhar, D. Ravinder, Int. J. of Nanopart. Res., 2(6), 1 (2018). https://escipub.com/Articles/IJONR/IJNR-2018-01-0302

L.J. Berchmans, R.K. Selvan, and C.O. Augustin, Mater. Lettrs. 58(12), 1928 (2004). https://doi.org/10.1016/j.matlet.2003.12.008

Z. Yue, J. Zhou, L. Li, X. Wang, and Z. Gui, Mater. Sci. and Eng. B, 86(1), 64 (2001). https://doi.org/10.1016/S0921-5107(01)00660-2

N.M. Deraz, Int. J. Electrochem. Sci. 8, 5203 (2013). http://electrochemsci.org/papers/vol8/80405203.pdf

A. Yamakawa, M. Hashiba, and Y. Nurishi, J. Mater. Sci. 24, 1491 (1989). https://doi.org/10.1007/BF02397091

N.M. Deraz, Ceramic International, 38, 511 (2012). https://doi.org/10.1016/j.ceramint.2011.07.036

N.M. Deraz, Int. J. Electrochem. Sci. 7, 4596 (2012). http://www.electrochemsci.org/papers/vol7/7054596.pdf

A. Becheri, M. Durr, P. Lo Nostro, and P. Baglioni, J. Nanopart. Res. 10, 679 (2008). https://doi.org/10.1007/s11051-007-9318-3

J. Jacob, and M.A. Khadar, J. Appl. Phys. 107(11), 114310 (2010). https://doi.org/10.1063/1.3429202

Y.B. Kannan, R. Saravanan, N. Srinivasan, and I. Ismail, J. Magn. and Magn. Mat. 423, 217 (2017). https://doi.org/10.1016/j.jmmm.2016.09.038

D. Venkatesh, K.V. Ramesh, and C.V.S.S. Sastry, AIP Conference Proceedings, 1859, 020035 (2017). https://doi.org/10.1063/1.4990188

F. Meyer, R. Hempelmann, S. Mathurband, and M. Veith, J. Mater. Chem. 9, 1755 (1999). https://doi.org/10.1039/A900014C

Giedrė Nenartavičienė, Darius Jasaitis, and Aivaras Kareiva, Acta Chim. Slov. 51, 661 (2004). https://acta-arhiv.chem-soc.si/51/51-4-661.pdf

M. Chroma, J. Pinkas, I. Pakutinskiene, A. Beganskiene, and A. Kareiva, Ceramic International, 31(8), 1123 (2005). https://doi.org/10.1016/j.ceramint.2004.11.012

J.J. Vijaya, L.J. Kennedy, G. Sekaran, and K.S. Nagaraja, Materials Research Bulletin, 43, 473 (2008). https://doi.org/10.1016/j.materresbull.2007.02.030

S. Angappan, L.J. Bechermans, and C.O. Augustin, Mater. Lett. 58, 2283 (2004). https://doi.org/10.1016/j.matlet.2004.01.033

Z. Chen, E. Shi, W. Li, Y. Zheng, N. Wu, and W. Zhong, J. Am. Ceram. Soc. 85, 2949 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00561.x

M. Llusar, A. Forés, J.A. Badenes, J. Calbo, M.A. Tena, and G. Monrós, J. Eur. Ceram. Soc. 21(8), 1121 (2001). https://doi.org/10.1016/S0955-2219(00)00295-8

A.A. Verberckmoes, B.M. Weckhuysen, and R.A. Schoonheydt, Micropor. Mesopor. Mater. 22(1-3), 165 (1998). https://doi.org/10.1016/S1387-1811(98)00091-2

F. Matteucci, G. Cruciani, M. Dondi, G. Gasparotto, and D.M. Tobaldi, J. Solid State Chem. 180(11), 3196 (2007). https://doi.org/10.1016/j.jssc.2007.08.029

P. Jeevanandam, Yu. Koltypin, and A. Gedanken, Mater. Sci. Eng. B, 90(1-2), 125 (2002). https://doi.org/10.1016/S0921-5107(01)00928-X

M. Jestl, I. Maran, A. Köck, W. Beinsting, and E. Gornik, Opt. Lett. 14(14), 719 (1989). https://doi.org/10.1364/OL.14.000719

A. Rahman, M.S. Charoo, and R. Jayaganthan, Materials Technology Adv. Perf. Mater. 30(3), 1 (2015). https://doi.org/10.1179/1753555714Y.0000000211

S.K. Sampath, D.G. Kanhere, and R. Pandey, J. Phys. Condens. Matter, 11, 3635 (1999). https://doi.org/10.1088/0953-8984/11/18/301

S. Suwanboon, T. Ratana, and T. Ratana, J. Sci. Technol. 4(1), 111 (2007). https://wjst.wu.ac.th/index.php/wjst/article/view/129/111

T. Takagahara, and K. Takeda, Phys. Rev. B, 46 15578 (1992). https://doi.org/10.1103/PhysRevB.46.15578

How to Cite
Kumar, K. V., & Bhavani, S. D. (2023). Effect of Calcination Temperature on Structural and Optical Properties of Nickel Aluminate Nanoparticles . East European Journal of Physics, (3), 355-362. https://doi.org/10.26565/2312-4334-2023-3-37