Chaos Synchronization of InGaAsP Lasers

  • Mohammed H.H. Al-Jassani Physics Department, Science College, University of Kufa, Najaf, Iraq https://orcid.org/0000-0003-1463-2474
  • Aqeel I. Faris The General Directorate of Education in Al_Najaf Al_Ashraf, Ministry of Education, Najaf, Iraq
  • Hussein H. Khudhur The General Directorate of Education in Al_Najaf Al_Ashraf, Ministry of Education, Najaf, Iraq
Keywords: InGaAsP laser, Chaos synchronization, Direct current modulation, Optical coupling, Cross-correlation coefficient

Abstract

The optical output of a semiconductor laser can fluctuate chaotically by modulating its direct current in limited conditions of the modulated current signal parameters in terms of modulation frequency and modulation index. In this work, single, double, and chaotic pulses of an InGaAsP laser with direct current modulation, are numerically presented through a bifurcation diagram. Numerically, the unidirectional optical coupling system realizes chaotic synchronization between two identical InGaAsP lasers with direct current modulation, as the transmitter/receiver configuration. The transmission time for transmitting light from the transmitted laser to the received laser is essential for controlling the quality of chaos synchronization. The transmission time applies on the order of nanoseconds. Chaos synchronization quality is estimated by a correlation plot and calculated by the cross-correlation coefficient. This study observed the best synchronization quality (complete chaos synchronization) when the two lasers are identical. On the other hand, the chaotic synchronization between two non-identical InGaAsP lasers was investigated. In this case, complete chaos synchronization is not found, and the quality of chaotic synchronization was observed to decrease as the mismatch between the parameters of the two lasers increased.

Downloads

Download data is not yet available.

References

L. M. Pecora, and T. L. Carroll, Physical review letters 64, 821(1990).

L. Kocarev, and U. Parlitz, Physical review letters 74, 5028(1995).

H. D. Abarbanel, and M. B. Kennel, Physical review letters 80, 3153(1998).

S. F.Abdalah, F. T. Arecchi, F. Marino, K. Al-Naimee, Ciszak M., and R. Meucci, “Optoelectronic feedback in semiconductor light sources: optimization of network components for synchronization, ” chapter 29, 651-660 (2011).

G. Yuan, X. Zhang, and Z. Wang, Optik 125, 1950-1953(2014).

J. Yang, and F. Zhu, Communications in Nonlinear Science and Numerical Simulation 18, 926-937(2013)

S. Moon, J. J. Baik, and J. M. Seo, Communications in Nonlinear Science and Numerical Simulation 96, 105708(2021).

C. R[1] L.M. Pecora, and T.L. Carroll, Physical review letters, 64, 821 (1990). https://doi.org/10.1103/PhysRevLett.64.821

L. Kocarev, and U. Parlitz, Physical review letters, 74, 5028 (1995). https://doi.org/10.1103/PhysRevLett.74.5028

H.D. Abarbanel, and M.B. Kennel, Physical review letters, 80, 3153 (1998). https://doi.org/10.1103/PhysRevLett.80.3153

S.F. Abdalah, F.T. Arecchi, F. Marino, K. Al-Naimee, M. Ciszak, and R. Meucci, in: Optoelectronic Devices and Properties, edited by O. Sergiyenko, (InTech, 2011), pp. 651-660. https://doi.org/10.5772/14197

G. Yuan, X. Zhang, and Z. Wang, Optik, 125, 1950 (2014). https://doi.org/10.1016/j.ijleo.2013.11.007

J. Yang, and F. Zhu, Communications in Nonlinear Science and Numerical Simulation, 18, 926-937 (2013). https://doi.org/10.1016/j.cnsns.2012.09.009

S. Moon, J.J. Baik, and J.M. Seo, Communications in Nonlinear Science and Numerical Simulation, 96, 105708 (2021). https://doi.org/10.1016/j.cnsns.2021.105708

C.R. Mirasso, P. Colet, and P. García-Fernández, IEEE Photonics Technology Letters, 8, 299 (1996). https://doi.org/10.1109/68.484273

A. Sanchez-Diaz, C.R. Mirasso, P. Colet, and P. Garcia-Fernandez, IEEE journal of quantum electronics, 35, 292 (1999). https://doi.org/10.1109/3.748833

H.F. Chen, and J.M. Liu, IEEE journal of quantum electronics, 36, 27 (2000). https://doi.org/10.1109/3.817635

J.M. Liu, H.F. Chen, and S. Tang, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48, 1475 (2001). https://doi.org/10.1109/TCSI.2001.972854

S. Tang, and J.M. Liu, Optics letters, 26, 596 (2001). https://doi.org/10.1364/OL.26.000596

S. Tang, H.F. Chen, S.K. Hwang, and J.M. Liu, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49, 163 (2002). https://doi.org/10.1109/81.983864

N. Jiang, A. Zhao, S. Liu, C. Xue, and K. Qiu, Optics express, 26, 32404 (2018). https://doi.org/10.1364/oe.26.032404

A. Murakami, and J. Ohtsubo, Physical Review A, 65, 033826 (2002). https://doi.org/10.1103/PhysRevA.65.033826

E.M. Shahverdiev, and K.A. Shore, Optics Communications, 282, 3568 (2009). https://doi.org/10.1016/j.optcom.2009.05.068

I. Oowada, H. Ariizumi, M. Li, S. Yoshimori, A. Uchida, K. Yoshimura, and P. Davis, Optics express, 17, 10025-10034 (2009). https://doi.org/10.1364/OE.17.010025

L. Yu-Jin, Z. Sheng-Hai, and Q. Xing-Zhong, Chinese Physics, 16, 463 (2007). https://doi.org/10.1088/1009-1963/16/2/029

S. Tang, and J.M. Liu, IEEE journal of quantum electronics, 39, 708 (2003). https://doi.org/10.1109/JQE.2003.810775

M.H. Al-Lamye, and B.A. Ghalib, “High quality of generalized chaos synchronization in quantum-dot laser diode,” AIP Conference Proceedings, 2386, 080005 (2022). https://doi.org/10.1063/5.0066864

Y. C. Kouomou, and P. Woafo, Optics communications, 223, 283 (2003). https://doi.org/10.1016/S0030-4018(03)01683-3

S.T. Kingni, C. Ainamon, V. Kamdoum, and J.C. Orou, Chaos Theory and Applications, 2, 31-39 (2020). https://dergipark.org.tr/en/download/article-file/1154899

O. Junji, Semiconductor lasers: stability, instability and chaos, (Springer, 2017).

Y. Hori, H. Serizawa, and H. Sato, JOSA B, 5, 1128 (1988). https://doi.org/10.1364/JOSAB.5.001128

E. Hemery, L. Chusseau, and J.M. Lourtioz, IEEE journal of quantum electronics, 26, 633 (1990). https://doi.org/10.1109/3.53379

S. Bennett, C.M. Snowden, and S. Iezekiel, (1995). “Chaos in directly modulated laser diodes under two-tone modulation,” in: LEOS '95. IEEE Lasers and Electro-Optics Society 1995 Annual Meeting. 8th Annual Meeting. Conference Proceedings, 2, pp. 143-144, (1995). https://doi.org/10.1109/LEOS.1995.484637

S. Bennett, C.M. Snowden, and S. Iezekiel, IEEE journal of quantum electronics, 33, 2076 (1997). https://doi.org/10.1109/3.641323

G. Carpintero, and H. Lamela, Journal of applied physics, 82, 2766 (1997). https://doi.org/10.1063/1.366108

C.H. Lee, T.H. Yoon, and S.Y. Shin, Applied Physics Letters, 46, 95 (1985). https://doi.org/10.1063/1.95810

G.P. Agrawal, Applied physics letters, 49, 1013 (1986). https://doi.org/10.1063/1.97456

M. Tang, and S. Wang, Applied physics letters, 48, 900 (1986). https://doi.org/10.1063/1.96652

R.J. Jones, P. Rees, P.S. Spencer, and K.A. Shore, JOSA B, 18, 166-172 (2001). https://doi.org/10.1364/JOSAB.18.000166

Published
2023-09-04
Cited
How to Cite
Al-Jassani, M. H., Faris, A. I., & Khudhur, H. H. (2023). Chaos Synchronization of InGaAsP Lasers. East European Journal of Physics, (3), 592-598. https://doi.org/10.26565/2312-4334-2023-3-70