Nuclear Energy Levels Scheme of 46Cr Using FPD6, FPY, and KB3G Interactions

Keywords: Nuclear energy levels, FP Shell, FPY, Diagrammatic notation, FPD6, KB3G

Abstract

The 46Cr isotope nuclear energy levels were studied using low-level FP-LS shell inside the shell model calculations. Nuclear energy levels have been calculated using FPD6, KB3G, and FPY interactions in the fp-shell model space and F742 and F7MBZ in the f7/2 model space. The results are compared to one another and to the experimental data that is already accessible and specific outcomes are clearly in agreement. In addition to having a strong arrangement in the reproduced values of the energy levels scheme, the used model space interactions are the two-body matrix element in the fp-shell model space that is best fitted. Particularly below 3 MeV, the general estimation of the replicated data is good. The wave vectors and analysis are modeled in diagrammatic notation, and all inscriptions are given in this style. Utilizing the oscillator's potential, a single particle vector is built, using 40Ca as the core of the fp-shell and f7/2 model space. Results are obtained for all tested nuclei using the OXFORD BUENOS AIRES SHELL (OXBASH) model code.

Downloads

Download data is not yet available.

References

M. Honma, T. Otsuka, B.A. Brown, and T. Minzusaki, “Effective interaction for pf-shell nuclei,” Phys. Rev. C, 65, 061301(R) (2002). https://doi.org/10.1103/PhysRevC.65.061301

H. Crannell, R. Helm, H. Kendall, J. Oeser, and M. Yearian, “Electron-Scattering Study of Nuclear Levels in Cobalt, Nickel, Lead, and Bismuth,” Phys. Rev. 123(3), 923 (1961). https://doi.org/10.1103/PhysRev.123.923

J.I. Prisciandaro, P.F. Mantica, B.A. Brown, D.W. Anthony, M.W. Cooper, A. Garcia, D.E. Groh, et al., “New evidence for a subshell gap at N=32,” Phys. Lett. B, 510, 17-23 (2001). https://doi.org/10.1016/S0370-2693(01)00565-2

E. Caurier, and A.P. Zuker, Phys. Rev. C, 50, 225 (1994). https://doi.org/10.1103/PhysRevC.50.225

A. Poves, J. Sánchez-Solano, E. Caurier, and F. Nowacki, Nucl. Phys. A, 694, 157 (2001). https://doi.org/10.1016/S0375-9474(01)00967-8

W.A. Richter, M.G. Van Der Merwe, R.E. Julies, and B.A. Brown, Nucl. Phys. A, 532, 325 (1991). https://doi.org/10.1016/0375-9474(91)90007-S

V. Zelevinsky, B.A. Brown, N. Frazier, and M. Horoi, Phys. Rep. 276, 8 (1996). https://doi.org/10.1016/S0370-1573(96)00007-5

R.R. Whitehead, A. Watt, D. Kelvin, and A. Conkie, Phys. Lett. B, 76, 149 (1978). https://doi.org/10.1016/0370-2693(78)90262-9

B.A. Brown, G. Bertsch, Phys. Lett. B, 148(1-3), 5 (1984). https://doi.org/10.1016/0370-2693%2884%2991598-3

J. Suhonen, From Nucleons to Nucleus Concepts of Microscopic Nuclear Theory, (Springer, Finland, 2006).

R.D. Lawson, Theory of the Nuclear Shell Model, (Clarendon Press, Oxford, New York, 1980).

L. Coraggio, A. Covello, N. Itaco, and T.T.S. Kuo, Prog. Part. Nucl. Phys. 62, 135 (2009). https://doi.org/10.1016/j.ppnp.2008.06.001

F.Z. Majeed, and S.S. Mashaan, Indian Journal of Natural Sciences, 9, 50 (2018).

M.K. Hassan, and F.Z. Majeed, East Eur. J. Phys. 1, 89 (2023), https://doi.org/10.26565/2312-4334-2023-1-10

M.K. Hassan, and F.Z. Majeed, East Eur. J. Phys. 1, 69 (2023), https://doi.org/10.26565/2312-4334-2023-1-07

R. M. Hussien and F.Z. Majeed, BSJ, 19(6), 1395 (2022)

A. H. Ali, BSJ, 17(2), (2020)507, http://dx.doi.org/10.21123/bsj.2020.17.2.0502

A.M. Ali and A. A. Khamees, IJS, 60, 60 (2019). https://doi.org/10.24996/ijs.2019.60.1.8

B.S. Hameed, and B.K. Rejah, BSJ, 19, 1566 (2022). https://dx.doi.org/10.21123/bsj.2022.7537

B.A. Brown et al, OXBASH code, MSUNSCL Report 524 (1988).

P.J. Brussaard, and P.W.M. Glademans, Shell-model Applications in Nuclear Spectroscopy, (North-Holland Publishing Company, Amsterdam, 1977).

Published
2023-09-04
Cited
How to Cite
Kadhim, H. A., & Majeed, F. Z. (2023). Nuclear Energy Levels Scheme of 46Cr Using FPD6, FPY, and KB3G Interactions. East European Journal of Physics, (3), 187-191. https://doi.org/10.26565/2312-4334-2023-3-15