Nuclear Energy Levels Scheme of 46Cr Using FPD6, FPY, and KB3G Interactions
Abstract
The 46Cr isotope nuclear energy levels were studied using low-level FP-LS shell inside the shell model calculations. Nuclear energy levels have been calculated using FPD6, KB3G, and FPY interactions in the fp-shell model space and F742 and F7MBZ in the f7/2 model space. The results are compared to one another and to the experimental data that is already accessible and specific outcomes are clearly in agreement. In addition to having a strong arrangement in the reproduced values of the energy levels scheme, the used model space interactions are the two-body matrix element in the fp-shell model space that is best fitted. Particularly below 3 MeV, the general estimation of the replicated data is good. The wave vectors and analysis are modeled in diagrammatic notation, and all inscriptions are given in this style. Utilizing the oscillator's potential, a single particle vector is built, using 40Ca as the core of the fp-shell and f7/2 model space. Results are obtained for all tested nuclei using the OXFORD BUENOS AIRES SHELL (OXBASH) model code.
Downloads
References
M. Honma, T. Otsuka, B.A. Brown, and T. Minzusaki, “Effective interaction for pf-shell nuclei,” Phys. Rev. C, 65, 061301(R) (2002). https://doi.org/10.1103/PhysRevC.65.061301
H. Crannell, R. Helm, H. Kendall, J. Oeser, and M. Yearian, “Electron-Scattering Study of Nuclear Levels in Cobalt, Nickel, Lead, and Bismuth,” Phys. Rev. 123(3), 923 (1961). https://doi.org/10.1103/PhysRev.123.923
J.I. Prisciandaro, P.F. Mantica, B.A. Brown, D.W. Anthony, M.W. Cooper, A. Garcia, D.E. Groh, et al., “New evidence for a subshell gap at N=32,” Phys. Lett. B, 510, 17-23 (2001). https://doi.org/10.1016/S0370-2693(01)00565-2
E. Caurier, and A.P. Zuker, Phys. Rev. C, 50, 225 (1994). https://doi.org/10.1103/PhysRevC.50.225
A. Poves, J. Sánchez-Solano, E. Caurier, and F. Nowacki, Nucl. Phys. A, 694, 157 (2001). https://doi.org/10.1016/S0375-9474(01)00967-8
W.A. Richter, M.G. Van Der Merwe, R.E. Julies, and B.A. Brown, Nucl. Phys. A, 532, 325 (1991). https://doi.org/10.1016/0375-9474(91)90007-S
V. Zelevinsky, B.A. Brown, N. Frazier, and M. Horoi, Phys. Rep. 276, 8 (1996). https://doi.org/10.1016/S0370-1573(96)00007-5
R.R. Whitehead, A. Watt, D. Kelvin, and A. Conkie, Phys. Lett. B, 76, 149 (1978). https://doi.org/10.1016/0370-2693(78)90262-9
B.A. Brown, G. Bertsch, Phys. Lett. B, 148(1-3), 5 (1984). https://doi.org/10.1016/0370-2693%2884%2991598-3
J. Suhonen, From Nucleons to Nucleus Concepts of Microscopic Nuclear Theory, (Springer, Finland, 2006).
R.D. Lawson, Theory of the Nuclear Shell Model, (Clarendon Press, Oxford, New York, 1980).
L. Coraggio, A. Covello, N. Itaco, and T.T.S. Kuo, Prog. Part. Nucl. Phys. 62, 135 (2009). https://doi.org/10.1016/j.ppnp.2008.06.001
F.Z. Majeed, and S.S. Mashaan, Indian Journal of Natural Sciences, 9, 50 (2018).
M.K. Hassan, and F.Z. Majeed, East Eur. J. Phys. 1, 89 (2023), https://doi.org/10.26565/2312-4334-2023-1-10
M.K. Hassan, and F.Z. Majeed, East Eur. J. Phys. 1, 69 (2023), https://doi.org/10.26565/2312-4334-2023-1-07
R. M. Hussien and F.Z. Majeed, BSJ, 19(6), 1395 (2022)
A. H. Ali, BSJ, 17(2), (2020)507, http://dx.doi.org/10.21123/bsj.2020.17.2.0502
A.M. Ali and A. A. Khamees, IJS, 60, 60 (2019). https://doi.org/10.24996/ijs.2019.60.1.8
B.S. Hameed, and B.K. Rejah, BSJ, 19, 1566 (2022). https://dx.doi.org/10.21123/bsj.2022.7537
B.A. Brown et al, OXBASH code, MSUNSCL Report 524 (1988).
P.J. Brussaard, and P.W.M. Glademans, Shell-model Applications in Nuclear Spectroscopy, (North-Holland Publishing Company, Amsterdam, 1977).
Copyright (c) 2023 Hasan A. Kadhim, Firas Z. Majeed
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).