First-Principles Calculation of Structural, Electronic, and Optical Properties of Cubic Perovskite CsPbF3

  • Zozan Y. Mohammed Department of Physics, College of Science, University of Duhok, Kurdistan Region-Iraq
  • Sarkawt A. Sami Department of Physics, College of Science, University of Duhok, Kurdistan Region-Iraq
  • Jalal M. Salih Department of Physics, College of Science, University of Duhok, Kurdistan Region-Iraq
Keywords: CsPbF3, Perovskite, Structural properties, Bandgap, Optoelectronic properties, First-principles method


Lead halide perovskites have attracted considerable attention as one of the most promising materials for optoelectronic applications. The structural, electronic, and optical properties of the cubic perovskite CsPbF3 were studied using density functional theory in conjunction with plane waves, norm-conserving pseudopotentials, and Perdew-Berg-Erzenhof flavor of generalized gradient approximation. The obtained structural parameters are a good agreement with the experimentally measured and other’s theoretically predicted values. The obtained electronic band structure revealed that cubic CsPbF3 has a direct fundamental band gap of 2.99 eV at point R. The calculated energy band gaps at the high symmetry points agree with the other available theoretical results. The GW method is adapted to correct the underestimated fundamental energy gap value to 4.05 eV. The contribution of the different bands was analyzed from the total and partial density of states. The electron densities show that Cs and F have strong ionic bonds, whereas Pb and F have strong covalent bonds. The optical properties of CsPbF3 were calculated using the density functional perturbation theory and Kramers-Kronig relations. The wide and direct bandgap nature and the calculated optical properties imply that cubic CsPbF3 can be used in optical and optoelectronic devices for high frequencies visible and low frequencies ultraviolet electromagnetic radiation.


Download data is not yet available.


C. Weeks, and M. Franz, “Topological insulators on the Lieb and perovskite lattices,” Phys. Rev. B - Condens. Matter Mater. Phys. 82(8), 1-5 (2010),

A.S. Moskvin, A.A. Makhnev, L.V. Nomerovannaya, N.N. Loshkareva, and A.M. Balbashov, “Interplay of p-d and d-d charge transfer transitions in rare-earth perovskite manganites,” 82(3), 035106 (2018),

G. Murtaza, I. Ahmad, M. Maqbool, H.A.R. Aliabad, and A. Afaq, “Structural and optoelectronic properties of cubic CsPbF3 for novel applications,” Chinese Phys. Lett. 28(11), 117803 (2011),

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, 499(7458), 316-319 (2013),

S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, et al., “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science (80)., 342(6156), 341-344 (2013),

J. Duan, Y. Zhao, X. Yang, Y. Wang, B. He, and Q. Tang, “Lanthanide Ions Doped CsPbBr3 Halides for HTM-Free 10.14%-Efficiency Inorganic Perovskite Solar Cell with an Ultrahigh Open-Circuit Voltage of 1.594 V,” Adv. Energy Mater. 8(31), 1802346 (2018),

M. Roknuzzaman, K.K. Ostrikov, H. Wang, A. Du, and T. Tesfamichael, “Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations,” Sci. Rep. 7(1), 14025 (2017),

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050 (2009),

F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, et al., “Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency,” Nat. Mater. 17(9), 820 826 (2018),

V.M. Bouznik, Yu.N. Moskvich, and V.N. Voronov, “Nuclear Magnetic Resonance Study Of "F Motion In CssPbF,” Chem. Phys. Lett. 37(3), 464-467 (1976),

A.V Chadwick, J.H. Strange, G.A. Ranieri, and M. Terenzi, “Studies of ionic motion in perovsmite fluorides,” Solid State Ionics, 9, 555-558 (1983),

P. Berastegui, S. Hull, and S.-G. Eriksson, “A low-temperature structural phase transition in CsPbF 3,” J. Phys. Condens. Matter, 13(22), 5077 (2001),

E.H. Smith, N.A. Benedek, and C.J. Fennie, “Interplay of Octahedral Rotations and Lone Pair Ferroelectricity in CsPbF3,” Inorg. Chem. 54(17), 8536-8543 (2015),

P. Bhumla, D. Gill, S. Sheoran, and S. Bhattacharya, “Origin of Rashba spin-splitting and strain tunability in ferroelectric bulk CsPbF3,” J. Phys. Chem. Lett. 12(39), 9539-9546 (2021),

A. Amudhavalli, R. Rajeswarapalanichamy, R. Padmavathy, and K. Iyakutti, “Electronic structure and optical properties of CsPbF3-yIy (y = 0, 1, 2) cubic perovskites,” Acta Phys Pol A, 139(6), 692-697 (2021),

Y. Selmani, H. Labrim, M. Mouatassime, and L. Bahmad, “Structural, optoelectronic and thermoelectric properties of Cs-based fluoroperovskites CsMF3 (M = Ge, Sn or Pb),” Mater. Sci. Semicond. Process. 152, 107053 (2022),

D.R. Hamann, “Optimized norm-conserving Vanderbilt pseudopotentials,” Phys. Rev. B, 88(8), 085117 (2013),

X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, and D. Caliste, et al., “ABINIT: First-principles approach to material and nanosystem properties,” Comput. Phys. Commun. 180(12), 2582-2615 (2009),

X. Gonze, F. Jollet, F. A. Araujo, D. Adams, and B. Amadon, “Recent developments in the ABINIT software package,” Comput. Phys. Commun. 205, 106-131 (2016),

The ABINIT Group, maintained by Jean-Michel Beuken,

Z. Yi, N. H. Ladi, X. Shai, H. Li, Y. Shen, and M. Wang, “Will organic-inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications?,” Nanoscale Adv. 1(4), 1276-1289 (2019),

B.M. Ilyas, and B.H. Elias, “Theoretical Study of the Structural, Elastic, Electronic, Optical and Thermodynamic Properties of CsXCl3 (X = Pb, Cd) under Pressure,” Phys. B Condens. Matter, S0921-4526(16), 30587 (2016),

S. Sharma, and C. Ambrosch-Draxl, “Second-harmonic optical response from first principles,” Phys. Scr. T, T109, 128 (2004),

L.A. Collins et al., “Dynamical and optical properties of warm dense hydrogen,” Phys. Rev. B, 63(18), 184110 (2001),

S. Goedecker, and M. Teter, “Separable dual-space Gaussian pseudopotentials,” Phys. Rev. B, 54(3), 1703 (1996),

C. Hartwigsen, S. Goedecker, and J. Hutter, “Relativistic separable dual-space Gaussian pseudopotentials from H to Rn,” Phys. Rev. B, 58(7), 3641 (1998),

F. Birch, “Finite elastic strain of cubic crystals,” Phys. Rev. 71(11), 809-824 (1947),

R.1. K. H. James E. Huheey, Ellen A. Keiter, and Collins, “lnorganic Chemistry: Principles of Structure and Reactivity,” Annu. Rev. Psychol. 8(4), 257-271 (1993),

L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhu, X. Zhou, P. Wu, and C.H. Li, “Prediction of lattice constant in cubic perovskites,” J. Phys. Chem. Solids, 67(7), 1531-1536 (2006),

Q. Mahmood, M. Hassan, M. Rashid, B. U. Haq, and A. Laref, “The systematic study of mechanical, thermoelectric and optical properties of lead based halides by first principle approach,” Phys. B Condens. Matter, 571, 87-92 (2019),

K.E. Babu, A. Veeraiah, D.T. Swamy, and V. Veeraiah, “First-principles study of electronic and optical properties of cubic perovskite CsSrF,” Mater. Sci. Pol. 30(4), 359-367 (2012),

N.A. Abdulkareem, “First principle study of structural, electronic and optical behaviour of CsPbX3 (X= Br, Cl, I) under hydrostatic pressure,” University of Zakho Zakho, Kurdistan region-Iraq, 2011.

L.A. Collins et al., “Dynamical and optical properties of warm dense hydrogen,” Phys. Rev. B - Condens. Matter Mater. Phys. 63(18), 184110 (2001),

S.K. Mitro, M. Saiduzzaman, T.I. Asif, and K.M. Hossain, “Band gap engineering to stimulate the optoelectronic performance of lead-free halide perovskites RbGeX 3 (X = Cl, Br) under pressure,” J. Mater. Sci. Mater. Electron. 33(17), 13860-13875 (2022),

B. Xu, X. Li, J. Sun, and L. Yi, “Electronic structure, ferroelectricity and optical properties of CaBi2Ta2O9,” Eur. Phys. J. B, 66, 483-487 (2008),

L.J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature, 406(6793), 277-279 (2000),

N.P. Bigelow, and C.R. Hagen, “Comment on ‘observation of superluminal behaviors in wave propagation,’” Phys. Rev. Lett. 87(5), 59401-1 (2001),

How to Cite
Mohammed, Z. Y., Sami, S. A., & Salih, J. M. (2023). First-Principles Calculation of Structural, Electronic, and Optical Properties of Cubic Perovskite CsPbF3. East European Journal of Physics, (3), 263-270.