Structural, Electrical and Optical Studies of NixCd1-xS (x = 0.8, 0.6, 0.4 and 0.2) Nanoparticle System

  • Moly M. Rose Department of Physics and Research Centre (Reg.No.18123112132030), Nesamony Memorial Christian College, Marthandam, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India https://orcid.org/0000-0003-4840-0567
  • R. Sheela Christy Department of Physics and Research Centre (Reg.No.18123112132030), Nesamony Memorial Christian College, Marthandam, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
  • T. Asenath Benitta Department of Physics and Research Centre (Reg.No.18123112132030), Nesamony Memorial Christian College, Marthandam, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
  • J. Thampi Thanka Kumaran Department of Physics and Research Centre, Malankara Catholic College Mariagiri
Keywords: nanoparticles, chemical precipitation, phase transition, electrical, optical, bandgap

Abstract

This paper demonstrates the synthesis of NixCd1-xS (x=0.8,0.6,0.4,0.2) nanoparticles by microwave-assisted chemical precipitation method. The prepared samples were characterized by XRD, EDAX, SEM, UV-VIS, and PL spectroscopy. The energy-dispersive x-ray analysis confirms the existence of Nickel, Cadmium and Sulphur in proper ratios. The DC electrical resistances were measured in the temperature range of 300 K-500 K. The temperature resistance curves of all the samples show phase transitions above a particular temperature. The UV and PL spectra of all the samples were compared and studied.

Downloads

Download data is not yet available.

References

P.-F. Yin, L.L. Sun, C. Zhou, Y.-H. Sun, X.Y. Han, and C.R. Deng, “Synthesis, characterization and magnetic property of 3D flower-like Nickel Sulphide nanocrystals through decomposing bis(thiourea) nickel(II) chloride crystals”, Bull. Mater. Sci. 38(1), 2015, 95 (2014). https://doi.org/10.1007/s12034-014-0815-6

S. Darezereshki, A.B. Vakylabad, A. Hassanzadeh, T. Niedoba, A. Surowiak, and B. Koohestani, “Hydrometallurgical Synthesis of Nickel Nano-Sulfides from Spent Lithium-Ion Batteries”, Minerals, 11, 419 (2021). https://doi.org/10.3390/min11040419

E. Darezereshki, A.B. Vakylabad, A. Hassanzadeh, T. Niedoba, A. Surowiak, and B. Koohestani, “Hydrometallurgical Synthesis of Nickel Nano-Sulfides from Spent Lithium-Ion Batteries”, Minerals, 11, 419 (2021). https://doi.org/10.3390/min11040419

A. Sarkar, A.K. Chakraborty, and S. Bera, “NiS/rGO nanohybrid: An excellent counter electrode for dye sensitized solar cell”, Solar Energy Materials and Solar Cells, 182, 314 (2018). https://doi.org/10.1016/j.solmat.2018.03.026

I.M. Maafa, “Synthesis and characterization of NiS Nanoparticles Carbon Nanofiber Composite as Electrocatalyst for Methanol Oxidation”, Int. J. Electrochem. Sci. 16, 210431 (2021). https://doi.org/10.20964/2021.04.32

S. Nagaveena, S.N. Kumar, and C.K. Mahadevan, “Synthesis by a Novel Method and Application of Image Processing in Characterization of Nickel Sulphide Nanoparticles”, International Journal of Engineering Research and Applications, 3(2), 1214 (2013). https://www.academia.edu/download/31091547/GP3212141218.pdf

R. Bhardwaj, R. Jha, M. Bhushana, and R. Sharma, “Enhanced electrocatalytic activity of the solvothermally synthesized Mesoporous Rhombohedral Nickel Sulphide”, Materials Science in Semiconductor Processing, 118(1), 105194 (2020). https://doi.org/10.1016/j.mssp.2020.105194

M. Kristl, B. Dojer, S. Gyergyek, and J. Kristl, “Synthesis of nickel and cobalt sulfide nanoparticles using a low cost sonochemical method”, Heliyon 3, e00273 (2017). http://dx.doi.org/10.1016/j.heliyon.2017.e00273

B. Naresh, D. Punnoose, S.S. Rao, A. Subramnian, B.R. Ramesh, and H.-J. Kim, “Hydrothermal synthesis and pseudocapacitivve properties of morphology-tuned nickel sulfide (NiS) nanostructures”, New Journal of Chemistry, 4, (2018). https://doi.org/10.1039/C7NJ05054B

H. Banaiean-Monfared, H. Emadi, and M. Enhessari, “Synthesis and characterization of nickel sulfide nanoparticles via cyclic microwave radiation”, Comptes Rendus Chimie, 16(10), 929936 (2013). https://doi.org/10.1016/j.crci.2013.01.011

V. Singh, P.K. Sharma, P. Chauhana, “Surfactant mediated phase transformation of CdS nanoparticles,” Mater. chemistry physics, 121, 202-207 (2010). https://doi.org/10.1016/j.matchemphys.2010.01.019

R.-M. Ma, L. Dai, H.-B. Huo, W.-J. Xu, and G.G. Qin, “High-Performance Logic Circuits Constructed on Single CdS Nanowires,” Nanoletters, 7(11), 3300 (2007). https://doi.org/10.1021/nl071528

C. Martınez-Alonso, H.J. Cortina-Marrero, C.S. Coria-Monroy, M.C. Arenas, M.E. Nicho, and H. Hu, “Solution synthesized CdS nanoparticles for hybrid solar cell Applications,” J. Mater. Sci: Mater Electron. 26, 5539 (2015). https://doi.org/10.1007/s10854-014-2072-2

M. Kowshik, N. Deshmukh, W. Vogel, J. Urban, S.K. Kulkarni, and K.M. Panikar, “Microbial Synthesis of semiconductor CdS Nanoparticles, Their Characterization, and Their Use in the Fabrication of an ideal diode”, Biotechnology and Bioengineering, 78(5), 583 (2002). https://doi.org/10.1002/bit.10233

D. Ayodhya, M. Venkatsham, A. Santhoshikumari, G. Bhagavanthreddy, and G. Veerabhadram “One Spot Sonochemical Synthesis of CdS nanoparticles: Photocatalytic and electrical properties”, Int. J. Ind. Chem, 6, 261-271 (2015). https://doi.org/10.1007/s40090-015-0047-7

Q. Wu, L. Huang, Z. Li, W. An, D. Liu, J. Lin, L. Tian, et al., “The Potential Application of Raw Cadmium Sulfide Nanoparticles as CT Photographic Developer”, Nanoscale Research Letters, 11, 232 (2016). https://doi.org/10.1186/s11671-016-1424-7

R. Harish, K.D. Nisha, S. Prabakaran, B. Sridevi, S. Harish, M. Navaneethan, S. Ponnusamy, et al., “Cytotoxicity assessment of chitosan coated CdS nanoparticles for bio-imaging applications”, Applied Surface Science, 499, 143817 (2020). https://doi.org/10.1016/j.apsusc.2019.143817

N.V. Hullavarad, and S.S. Hullavarad, “Synthesis and characterization of monodispersed CdS nanoparticles in SiO2 fibers by sol gel method”, Photonics and Nanostructures Fundamentals and Applications, 5, 156 (2007). https://doi.org/10.1016/j.photonics.2007.03.001

P. Rodriguez, N. Munoz-Aguirre, E. San-Martin Martinez, G. Gonzalez de la Cruz, S.A. Tomas, and O.Z. Angel, “Synthesis and spectral properties of starch capped CdS nanoparticles in aqueous solution”, Journal of Crystal Growth, 310, 160 (2008). https://doi.org/10.1016/j.jcrysgro.2007.09.036

R. Xu, Y. Wanga, G. Jia, W. Xu, S. Liang, and D. Yin, “Zinc blende and wurtzite cadmium sulfide nanocrystals with strong photoluminescence and ultrastability”, Journal of Crystal Growth, 299, 28 (2007). https://doi.org/10.1016/j.jcrysgro.2006.11.252

V.P. Singh, R.S. Singh, G.W. Thompson, V. Jayaraman, S. Sanagapalli, and V.K. Rangari, “Characteristics of nanocrystalline CdS films fabricated by sonochemical, microwave and solution growth methods for solar cell applications,” Solar Energy Materials & Solar Cells, 81, 293 (2004). https://doi.org/10.1016/j.solmat.2003.11.007

Y. Wada, H. Kuramoto J. Anand, T. Kitamura, T. Sakata, H. Mori, and S.J. Yanagida, “Microwave-assisted size control of CdS nanocrystallites”, Mater. Chem. 11, 1936 (2001). https://doi.org/10.1039/b101358k

O.O. Balayeva, A.A. Azizov, M.B. Muradov, A.M. Maharramov, G.M. Eyvazova, R.J. Gasimov, and Z.X. Dadashov, “Effect of thermal annealing on the properties of nickel sulfide nanostructures: Structural phase transition”, Materials Science in Semiconductor Processing, 64, 130 (2017). https://doi.org/10.1016/j.mssp.2017.03.021

P. Wang, B. Xiao, R. Zhao, Y. Ma, and M. Zhang, “Structure-Dependent Spin Polarization in Polymorphic CdS:Y Semiconductor Nanocrystals”, ACS Applied Materials & Interfaces, https://doi.org/10.1021/acsami.5b12542

R. Martın-Rodrıguez, J. Gonzalez, R. Valiente, F. Aguado D. Santamarıa-Perez, and F. Rodrıguez, “Reversibility of the zinc-blende to rock-salt phase transition in cadmium sulfide nanocrystals”, Journal of applied physics, 111, 063516 (2012). http://dx.doi.org/10.1063/1.3697562

X. Li, H. Zhang, J. Gao, D. Guo, C. Yang, L. Xu, B. Liu, et al., “Transition temperature reduction for CdS nanoparticles under high pressure”, J. Nanopart. Res. 13, 6563 (2011). https://doi.org/10.1007/s11051-011-0562-1

L. Meng, J.M.D. Lane, L. Baca, J. Tafoya, T. Ao, B. Stoltzfus, et al., “Shape Dependence of Pressure-Induced Phase Transition in CdS Semiconductor Nanocrystals”, J. Am. Chem. Soc. 142, 6505 (2020). https://dx.doi.org/10.1021/jacs.0c01906

J. Marquez-Marin, C.G. Torres-Castanedo, G. Torres-Delgado, M.A. Aguilar-Frutis, R. Castanedo-Perez, and O. Zelaya-Angel, “Very sharp zinc blende-wurtzite phase transition of CdS nanoparticles”, Superlattices and Microstructures, 102, 442 (2017). https://doi.org/10.1016/j.spmi.2017.01

V. Sivasubramanian, A.K. Arora, M. Premila, C.S. Sundar, and V.S. Sastry, “Optical properties of CdS nanoparticles upon annealing”, Physica E: Low-dimensional Systems and Nanostructures, 31, 93 (2006). https://doi.org/10.1016/j.physe.2005.10.001

M.M. Rose, R.S. Christy, T.A. Benitta, and J.T.T. Kumaran, “Phase transitions in cadmium sulfide nanoparticles”, AIP Advances 11, 085129 (2021). https://doi.org/10.1063/5.0052078

M. Elango, D. Nataraj, K.P. Nazeer, and M. Thamilselvan, “Synthesis and characterization of nickel doped cadmium sulfide (CdS:Ni2+) nanoparticles”, Materials Research Bulletin, 47(6), 1533 (2016). https://doi.org/10.1016/j.materresbull.2012.02.033

D. Wu, F. Wang, Y. Tan, and C. Li, “Facile synthesis of NiS/CdS nanocomposites for photocatalytic degradation of quinoline under visible-light irradiation”, RSC Adv. 6, 73522 (2016). https://doi.org/10.1039/C6RA13439D

A.M.B. Leena, and K. Raji, “Photocatalytic Activity of Pure and Nickel Doped Cadmium Sulphide Nanoparticles Synthesized via Co-Precipitation Method”, J. Nanosci. Tech. 5(3), 710 (2019). https://doi.org/10.30799/jnst.S21.19050301

V.P.M. Shajudheen, V.S. Kumar, K.A. Rani, M. Uma, and K. Saravana, “Structural and Optical Properties of NiS Nanoparticles Synthesized by Chemical Precipitation Method”, International Journal of Innovative Research in Science, Engineering and Technology, 5(8), 15099 (2016). http://www.ijirset.com/upload/2016/august/60_15_Structural.pdf

M.M. Rose, R.S. Christy, T.A. Benitta, and J.T.T. Kumaran, “Phase transitions in cadmium sulfide nanoparticles”, AIP Advances 11, 085129 (2021). https://doi.org/10.1063/5.0052078

R.S. Christy, J.T.T. Kumaran, C. Bansal, and M. Brightson, “Phase transition in Cus-Ag2S nanoparticle system”, Phase Transition, 89(2), 155 (2016). http://dx.doi.org/10.1080/01411594.2015.1102257

M.M. Rose, R.S. Christy, T.A. Benitta, J.T.T. Kumaran, “Phase transitions in cadmium sulfide nanoparticles”, AIP Advances, (2021). https://doi.org/10.1063/5.0052078

R.R.A. Rozue, V. Shally, M.P. Dharshini, and S.G. Jayam, “Structural and Optical properties of Nickel Sulphide (NiS) nanoparticles”, International Journal of Nano Science and Nanotechnology, 6(1), 41 (2015). http://irphouse.com/ijnn/ijnnv6n1_05.pdf

Y. Fazli, S.M. Pourmortazavi, I. Kohsari, M.S. Karimi, and M. Tajdari, “Synthesis, characterization and photocatalytic property of nickel sulfide nanoparticles”, Journal of Materials Science: Materials in Electronics, 27, 7192 (2016). https://doi.org/10.1007/s10854-016-4683-2

Published
2023-03-02
Cited
How to Cite
M. Rose, M., Christy, R. S., Benitta, T. A., & Kumaran, J. T. T. (2023). Structural, Electrical and Optical Studies of NixCd1-xS (x = 0.8, 0.6, 0.4 and 0.2) Nanoparticle System. East European Journal of Physics, (1), 146-153. https://doi.org/10.26565/2312-4334-2023-1-18