Semi-Empirical Predictions for Hardness of Rare Earth Pyrochlores; High-Permittivity Dielectrics and Thermal Barrier Coating Materials
Abstract
Herein, we have formulated a simplistic semi-empirical model for Vicker’s hardness of rare earth based pyrochlore compounds. We have considered the structured 97 pyrochlore compounds for Vicker’s hardness calculations. The plasmon energy (ħωp) depends on basic parameters of the material such as Ne-effective number of free electrons per unit volume participating in plasma oscillations, e-electronic charge and m-mass of an electron. The proposed model predicts that the experimental and theoretical values of Vicker’s hardness increases as plasmon energy of pyrochlore increases. We have found that the calculated values are in better agreement with available experimental and theoretical data, which supports the validity of the model. This model supports the modeling of emerging functional pyrochlore compounds and helps to understand their mechanical properties for excellent thermal stability, superconductivities, batteries, ferroelectricity, water spitting, high ionic conductivity, good photoluminescence, inherent oxygen vacancies, exotic magnetism, and now-a-days most importantly in nuclear waste encapsulation and aerospace industry
Downloads
References
S. Singh, A. Bandyopadhyay, “Crystal growth of magnetic pyrochlore oxides and their structure-property correlations”, in: Pyrochlore Ceramics Properties, Processing, and Applications, edited by A. Chowdhury, 1st edition (Elsevier, 2022). pp. 25.
A. Raza, A. Afaq, M.S. Kiani, M. Ahmed, A. Bakar, and M. Asif, J. Mater. Res. Technol. 18, 5005 (2022). https://doi.org/10.1016/j.jmrt.2022.04.111
J. Yang, M. Shahid, M. Zhao, J. Feng, C. Wan, and W. Pan, J. All. Comp. 663, 834 (2016). https://doi.org/10.1016/j.jallcom.2015.12.189
J. Feng, B. Xiao, Z.X. Qu, R. Zhou, and W. Pan, Appl. Phys. Lett. 99, 201909 (2011). https://doi.org/10.1063/1.3659482
C. Kaliyaperumal, A. Shankarakumar, J. Palanisamy, and T. Paramasivam, Mater. Lett. 228, 493 (2018). https://doi.org/10.1016/j.matlet.2018.06.087
G.M. Mustafa, S. Atiq, S.K. Abbas, S. Riaz, and S. Naseem, Ceram. Int. 44, 2170 (2018). https://doi.org/10.1016/j.ceramint.2017.10.172
Y. Zhao, N. Li, C. Xu. Y. Li, H. Zhu, P. Zhu, and W. Yang, Adv. Mater. 29, 1701513 (2017). https://doi.org/10.1002/adma.201701513
H. Zhang, K. Haule, and D. Vanderbilt, Phys. Rev. Lett. 118, 026404 (2017). https://doi.org/10.1103/PhysRevLett.118.026404
S. Chen, B. Pan, L. Zeng, S. Luo, X. Wang, and W. Su, RSC Adv. 7, 14186 (2017). https://doi.org/10.1039/C7RA00765E
J.S. Gardner, M.J.P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82, 53 (2010). https://doi.org/10.1103/RevModPhys.82.53
Y. Jiang, J.R. Smith, and G.R. Odette, et al., Acta Materialia, 58, 1536 (2010). https://doi.org/10.1016/j.actamat.2009.10.061
J. Wu, X. Wei, N.P. Padture, P.G. Klemens, M. Gell, E. García, P. Miranzo, and M.I. Osendi, Am. Ceram. Soc. 85, 3031 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00574.x
B. Liu, J. Wang, Y. Zhou, T. Liao, and F. Li, Acta Mater. 55, 2949 (2007). https://doi.org/10.1016/j.actamat.2010.04.031
Q. Xu, W. Pan, J. Wang, C. Wan, L. Qi, H. Miao, K. Mori, and T. Torigoe, J. Am. Ceram. Soc. 89, 340 (2006). https://doi.org/10.1111/j.1551-2916.2005.00667.x
F.A. Zhao, H.Y. Xiao, X.M. Bai, Z.J. Liu, and X.T. Zu, J. Alloys Compounds 776, 306 (2019). https://doi.org/10.1016/j.jallcom.2018.10.240
A. Chartier, C. Meis, J.P. Crocombette, L.R. Corrales, and W.J. Weber, Phys. Rev. B, 67, 174102 (2003). https://doi.org/10.1103/PhysRevB.67.174102
C.R. Stanek, R.W. Grimes, and L. Minervini, Am. Ceram. Soc. 85, 2792 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00530.x
J. Lian, L.M. Wang, S.X. Wang, J. Chen, L.A. Boatner, and R.C. Ewing, Phys. Rev. Lett. 87, 145901 (2001). https://doi.org/10.1103/PhysRevLett.87.145901
M.A. Subramaniam, G. Aravamundan, and G.V.S. Rao, Oxide Pyrochlores – A Review Progress in Solid State Chem. 15, 55 (1983). https://doi.org/10.1016/0079-6786(83)90001-8
X.T. Zu, J. Lian, and R.C. Ewing, J. Phys: Cond. Matt. 19, 346203 (2007). https://doi.org/10.1088/0953-8984/19/34/346203
F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, and Y. Tian, Phys. Rev. Lett. 91, 015502 (2003). https://doi.org/10.1103/PhysRevLett.91.015502
X. Guo, L. Li, Z. Liu, D. Yu, J. He, R. Liu, B. Xu, et al., J. Appl. Phys. 104, 023503 (2008). https://doi.org/10.1063/1.2956594
S.-H. Jhi, S.G. Louie, M.L. Cohen, and J. Ihm, Phys. Rev. Lett. 86, 3348 (2001). https://doi.org/10.1103/PhysRevLett.86.3348
J. Yang, M. Shahid, M. Zhao, J. Feng, C. Wan, and W. Pan, J. Alloys Comp. 663, 834 (2016). https://doi.org/10.1016/j.jallcom.2015.12.189
J. Feng, B. Xiao, C.L. Wan, Z.X. Qu, Z.C. Huang, J.C. Chen, R. Zhou, and W. Pan, Acta Mater. 59, 1742 (2011). https://doi.org/10.1016/j.actamat.2010.11.041
D.S. Yadav, and S.P. Singh, Phys. Scr. 82, 065705 (2010). https://doi.org/10.1088/0031-8949/82/06/065705
D.S. Yadav, and A.S. Verma, Int. J. Mod. Phys. B, 26, 1250020 (2012). https://doi.org/10.1142/S0217979212500208
D.S. Yadav, J. Alloys Comp. 537, 250 (2012). https://doi.org/10.1016/j.jallcom.2012.05.016
D.S. Yadav, and D.V. Singh, Phys. Scr. 85, 015701 (2012). https://doi.org/10.1088/0031-8949/85/01/015701
D.S. Yadav, J. Mater. Chem. Phys. 3, 6 (2015).
A.S. Verma, and S.R. Bhardwaj, Phys. Stat. Sol. (b) 243, 2858 (2006). https://doi.org/10.1002/pssb.200642140
R.C. Gupta, A.S. Verma, and K. Singh, East Eur. J. Phys. 1, 80 (2021). https://doi.org/10.26565/2312-4334-2021-1-10
R.C. Gupta, A.S. Verma, and K. Singh, East Eur. J. Phys. 1, 89 (2021). https://doi.org/10.26565/2312-4334-2021-1-11
R.C. Gupta, A.S. Verma, and K. Singh, J. Taibah Univ. Sci. 16, 676 (2022). https://doi.org/10.1080/16583655.2022.2100687
V. Kumar, V. Jha, and A.K. Shrivastava, Cryst. Res. Technol. 45, 920 (2010). https://doi.org/10.1002/crat.201000268
V. Kumar, G.M. Prasad, and D. Chandra, Phys. Stat. Solidi B, 170, 77 (1992). https://doi.org/10.1002/pssb.2221700108
V. Kumar, J.K. Singh, and G.M. Prasad, Ind. J. Pure Appl. Phys. 53, 429 (2015). http://nopr.niscpr.res.in/handle/123456789/31728
A.S. Verma, and S.R. Bharadwaj, J. Phys. Cond. Mater. 19, 026213 (2007). https://doi.org/10.1088/0953-8984/19/2/026213
Copyright (c) 2023 Rekha Bhati, Dheerendra Singh Yadav, Preeti Varshney, Rajesh Chandra Gupta, Ajay Singh Verma
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).