Structural, Electrical and Optical Studies of ZnxCu1-xS (x = 0.8, 0.6, 0.4 and 0.2) Nanoparticles

  • Moly M. Rose Department of Physics and Research Centre (Reg.No.18123112132030), Nesamony Memorial Christian College, Marthandam, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, TamilNadu India, 629165 https://orcid.org/0000-0003-4840-0567
  • R. Sheela Christy Department of Physics and Research Centre (Reg.No.18123112132030), Nesamony Memorial Christian College, Marthandam, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, TamilNadu, India
  • T. Asenath Benitta Department of Physics and Research Centre (Reg.No.18123112132030), Nesamony Memorial Christian College, Marthandam, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, TamilNadu, India
  • J. Thampi Thanka Kumaran Department of Physics and Research Centre, Malankara Catholic College, Mariagiri Kaliyakkavilai, Tamilnadu, India
Keywords: chemical precipitation, structural; electrical, phase transition

Abstract

ZnxCu1-xS (x = 0.8, 0.6, 0.4 and 0.2) nanoparticles were synthesized by microwave assisted chemical precipitation method. The as-synthesized nanoparticles were characterized by X ray diffraction, SEM and TEM analysis to study the crystal structure, size and surface morphology. The energy dispersed x-ray analysis confirms the presence of Zinc, Copper and Sulphur in proper ratio. The D.C. electrical resistance was measured in the temperature range 300K-500K. All the samples show phase transition above a particular temperature. UV, PL and Raman spectra of all the samples were compared and studied.

Downloads

Download data is not yet available.

References

X.D. Gao, X.M. Li, and W.D. Yu, “Morphology and optical properties of amorphous ZnS films deposited by ultrasonic-assisted successive ionic layer adsorption and reaction method”, Thin Solid Films, 468, 43 (2004). https://doi.org/10.1016/j.tsf.2004.04.005

I. Parvaneh, S. Samira, and N. Mohsen, “Characterization of ZnS nanoparticles synthesized by co-precipitation method”, Chinese Physics B, 24(4), 046104 (2015). https://doi.org/10.1088/1674-1056/24/4/046104

U.P. Onochie, S.C. Ikpeseni, A.E. Igweoko, H.I. Owamah, C.C. Aluma, and C. Augustine, “Optical Properties of Zinc Sulphide Thin Films Coated with Aqueous Organic Dye Extract for Solar and Optoelectronic Device Applications”, Journal of Electronic Materials, 50, 2576 (2021). https://doi.org/10.1007/s11664-021-08792-0

S.K. Mehta, Khushboo, and A. Umar, “Highly sensitive hydrazine chemical sensor based on mono-dispersed rapidly synthesized PEG-coated ZnS nanoparticles”, Talanta, 85(5), 2411 (2011). https://doi.org/10.1016/j.talanta.2011.07.089

M. Ragam, N. Sankar, and K. Ramachandran, “Investigation on Zinc Sulphide Nanoparticles in Dye Sensitized Solar Cell”, AIP Conference Proceedings, 1349, 411 (2011). https://doi.org/10.1063/1.3605909

H. Ali, S. Karim, M.A. Rafiq, K. Maaz, A.U. Rahman, A. Nisar, and M. Ahmad, “Electrical conduction mechanism in ZnS nanoparticles”, J. Alloys Compd. 612, 64 (2014). https://doi.org/10.1016/j.jallcom.2014.05.163

M. Jayalakshmi, and M.M. Rao, “Synthesis of zinc sulphide nanoparticles by thiourea hydrolysis and their characterization for electrochemical capacitor applications”, Journal of Power Sources, 157(1), 624 (2006). https://doi.org/10.1016/j.jpowsour.2005.08.001

S. Vijayan, G. Umadevi, R. Mariappan, M. Narayanan, B. Narayanamoorthy, and S. Kandasamy, “High luminescence efficiency of Copper doped Zinc Sulfide (Cu: ZnS) nanoparticles towards LED applications”, Materials Today: Proceedings, (2020). https://doi.org/10.1016/j.matpr.2020.11.214

T.T.Q. Hoa, L.V. Vu, T.D. Canh, and N.N. Long, “Preparation of ZnS nanoparticles by hydrothermal method”, Journal of Physics: Conference Series, 187, 012081 (2009). https://doi.org/10.1088/1742-6596/187/1/012081

L. Kashinath, K. Namratha, S. Srikantaswamy, A. Vinu, and K. Byrappa, “Microwave treated sol–gel synthesis and characterization of hybrid ZnS–RGO composites for efficient photodegradation of dyes”, New J. Chem. 41, 1723 (2017). https://doi.org/10.1039/C6NJ03716J

J.-R. Li, J.-F. Huang, L.-Y. Cao, J.-P. Wu, and H.-Y. He, “Synthesis and kinetics research of ZnS nanoparticles prepared by sonochemical process”, Material science and Technology, 26, 1269 (2013). https://doi.org/10.1179/026708309X12495548508428

S. Thangavel, K. Krishnamoorthy, S.-J. Kim, and G. Venugopal, “Designing ZnS decorated reduced graphene-oxide nanohybrid via microwave route and their application in photocatalysis”, Journal of Alloys and Compounds, 683, 456 (2016). https://doi.org/10.1016/j.jallcom.2016.05.089

T. Charinpanitkul, A. Chanagul, J. Dutta, U. Rungsardthong, and W. Tanthapanichakoon, “Effects of cosurfactant on ZnS nanoparticle synthesis in microemulsion”, Science and Technology of Advanced Materials, 6, 266 (2005). https://doi.org/10.1016/j.stam.2005.02.005

F.A. La Porta, M.M. Ferrer, Y.V.B. Santana, C.W. Raubach, V.M. Longo, J.R. Sambrano, E. Longo, et al., “Synthesis of wurtzite ZnS nanoparticles using the microwave assisted solvothermal method”, Journal of Alloys and Compounds, 556, 153 (2013). http://dx.doi.org/10.1016/j.jallcom.2012.12.081

T.T.Q. Hoa, L.V. Vu, T.D. Canh, and N.N. Long, “Preparation of ZnS nanoparticles by hydrothermal method”, IOP Publishing Journal of Physics, Conference Series, 187, 012081 (2009). https://doi.org/10.1088/1742-6596/187/1/012081

I. Puspitasari, T.P. Gujar, K.-D. Jung, and, O.-S. Joo, “Simple chemical preparation of CuS nanowhiskers”, Materials Science and Engineering B, 140, 199 (2007). https://doi.org/10.1016/j.mseb.2007.04.012

F. Ghribi, A. Alyamani, Z.B. Ayadi, K. Djessas, L. ELMir, “Study of CuS Thin Films for Solar Cell Applications Sputtered from Nanoparticles Synthesised by Hydrothermal Route”, Energy Procedia, 84, 197203 (2015). https://doi.org/10.1016/j.egypro.2015.12.314

H. Wang, Y. Sun, W. Yue, Q. Kang, H. Li, and D. Shen, “A smartphone-based double-channel fluorescence setup for immunoassay of a carcinoembryonic antigen using CuS nanoparticles for signal amplification”, Analyst, 143, 1670 (2018). https://doi.org/10.1039/C7AN01988B

M.P. Ravele, O.A. Oyewo, and D.C. Onwudiwe, “Controlled Synthesis of CuS and Cu9S5 and Their Application in the Photocatalytic Mineralization of Tetracycline”, Catalysts, 11, 899 (2021). https://doi.org/10.3390/catal11080899

D. Ayodhya, and G. Veerabhadram, “Investigation of temperature and frequency dependence ofelectrical conductivity and dielectric behavior in CuS and rGO capped CuS nanocomposites”, Mater. Res. Express, 6, 045910 (2019). https://doi.org/10.1088/2053-1591/aafe55

Z. Zha, S. Zhang, Z. Deng, Y. Li, C. Lia, and Z. Dai, “Enzyme-Responsive Copper Sulphide Nanoparticles for Combined Photoacoustic Imaging”, Chem. Commun. 49, 3455 (2013). https://doi.org/10.1039/C3CC40608C

S. Goel, F. Chen, and W. Cai, “Synthesis and Biomedical Applications of Copper Sulfide Nanoparticles: From Sensors to Theranostics”, Nano Micro Small, 10(4), 631 (2014). https://doi.org/10.1002/smll.201301174

M. Nafees, S. Ali, S. Idrees, K. Rashid, M.A. Shafique, “A simple microwave assists aqueous route to synthesis CuS nanoparticles and further aggregation to spherical shape”, Applied Nanoscience, 3, 119 (2013). https://doi.org/10.1007/s13204-012-0113-9

M. Saranya, C. Santhosh, R. Ramachandran, and A.N. Grace, “Growth of CuS Nanostructures by Hydrothermal Route and Its Optical Properties”, Journal of Nanotechnology, 2014, 321571 (2014). https://doi.org/10.1155/2014/321571

S. Riyaz, A. Parveen, and A. Azam, “Microstructural and optical properties of CuS nanoparticles prepared by sol–gel route”, Perspectives in Science, 8, 632 (2016). https://doi.org/10.1016/j.pisc.2016.06.041

J.N. Solanki, R. Sengupta, Z.V.P. Murthy, “Synthesis of copper sulphide and copper nanoparticles with microemulsion method”, Solid State Sciences, 12(9), 1560 (2010). https://doi.org/10.1016/j.solidstatesciences.2010.06.021

A.S.R. Manivannan, and S.N. Victoria, “Simple one-pot sonochemical synthesis of copper sulphide nanoparticles for solar cell applications”, Arabian Journal of Chemistry, 12(8), 2439 (2019). https://doi.org/10.1016/j.arabjc.2015.03.013

X.-H. Liao, N.-Y. Chen, S. Xu, S.-B. Yang, J.-J. Zhu, “A microwave assisted heating method for the preparation of copper sulfide nanorod”, Journal of Crystal Growth, 252(4), 593 (2003). https://doi.org/10.1016/S0022-0248(03)01030-3

A.K. Kole, and P. Kumbhakar, “Cubic-to-hexagonal phase transition and optical properties of chemically synthesized ZnS nanocrystals”, Results in Physics, 2, 150 (2012). http://dx.doi.org/10.1016/j.rinp.2012.09

J. Kennedy, P.P. Murmu, P.S. Gupta, D.A. Carder, S.V. Chong, J. Leveneur, and S. Rubanov, “Effects of annealing on the structural and optical properties of zinc sulfide thin films deposited by ion beam sputtering”, Materials Science in Semiconductor Processing 26, 561 (2014). http://dx.doi.org/10.1016/j.mssp.2014.05.055

Y. Li, W. Tan, and Y. Wu, “Phase Transition between Sphalerite and Wurtzite in ZnS”, Optical Ceramic Materials, 40(5), 2130 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.12.045

C. Yang, Y. Liu, H. Sun, D. Guo, X. Li, W. Li, B. Liu, and X. Zhang, “Pressure-induced transition-temperature reduction in ZnS nanoparticles”, Nanotechnology, 19, 095704 (2008). https://doi.org/10.1088/0957-4484/19/9/095704

M.M. Rose, R.S. Christy, T.A. Benitta, J.T.T. Kumaran, and M.R. Bindhu, “Phase transition in ZnS nanoparticles: electrical, thermal, structural, optical, morphological, antibacterial and photocatalytic properties”, Chalcogenide Letters, 19(11), 855 (2022). https://doi.org/10.15251/CL.2022.1911.855

P.V. Quintana-Ramirez, Ma.C. Arenas-Arrocena, J.Santos-Cruz, M. Vega-González, O. Martínez-Alvarez, V.M. Castaño-Meneses, L.S. Acosta-Torres, and J. de la Fuente-Hernández, “Growth evolution and phase transition from chalcocite to digenite in nanocrystalline copper sulfide: Morphological, optical and electrical properties”, Beilstein J. Nanotechnol. 5, 1542 (2014). https://doi.org/10.3762/bjnano.5.166

A. Narjis, A. Outzourhit, A. Aberkouks, M. El Hasnaoui, and L. Nkhaili, “Structural and thermoelectric properties of copper sulphide powders”, Journal of Semiconductors, 39(12), (2018). https://doi.org/10.1088/1674-4926/39/12/122001

W.Q. Peng, G.W. Cong, S.C. Qu, and Z.G. Wang, “Synthesis and photoluminescence of ZnS:Cu nanoparticles”, Optical Materials 29, 313 (2006). https://doi.org/10.1016/j.optmat.2005.10.003

J. Kaur, M. Sharma, and O.P. Pandey, “Structural and optical studies of undoped and copper doped zinc sulphide nanoparticles for photocatalytic application”, Superlattices and Microstructures, 77, 35 (2015). https://dx.doi.org/10.1016/j.spmi.2014.10.032

C. Mondal, A. Singh, R. Sahoo, A.K. Sasmal, Y. Negishib, and T. Pal, “Preformed ZnS nanoflower prompted evolution of CuS/ZnS p–n heterojunctions for exceptional visible-light driven photocatalytic activity”, Royal society for chemistry, New J. Chem. 39, 5628 (2015). https://doi.org/10.1039/c5nj00128e

S. Harish, J. Archana, M. Navaneethan, S.P.A. Singh, V. Gupta, D.K. Aswal, H. Ikeda, and Y. Hayakawa, “Synergetic effect of CuS@ZnS nanostructures on photocatalytic degradation of organic pollutant under visible light irradiation”, RSC Adv. 7, 34366 (2017). https://doi.org/10.1039/c7ra04250g

S. Vijayan, G. Umadevi, R. Mariappan, M. Narayanan, B. Narayanamoorthy, and S. Kandasamy, “High luminescence efficiency of Copper doped Zinc Sulfide (Cu: ZnS) nanoparticles towards LED applications”, Materials Today: Proceedings, (2020). https://doi.org/10.1016/j.matpr.2020.11.214

R.S. Christy, and J.T. Thankakumaran, “Phase transition in CuS nanoparticles”, Journal of Non-Oxide Glasses, 6(1), 13 (2016). https://chalcogen.ro/13_Sheela.pdf

R.S. Christy, J.T. Thankakumaran, and C. Bansal, “Jump in Band Gap Energy of Ag2S Nanoparticles Synthesised by Solvothermal Method”, Advanced science focus, 2(2), 115 (2014). https://doi.org/10.1166/asfo.2014.1087

T. Hurma, and S. Kose, “XRD Raman analysis and optical properties of CuS nanostructured film”, Optik - International Journal for Light and Electron Optics, 127(15), 6000 (2006). https://doi.org/10.1016/j.ijleo.2016.04.019

S.S. Kumar, M.A. Khadar, S.K. Dhara, T.R. Ravindran, and K.G.M. Nair, “Photoluminescence and Raman studies of ZnS nanoparticles implanted with Cu+ ions”, Nuclear Instruments and Methods in Physics Research B, 251, 435 (2006). https://doi.org/10.1016/j.nimb.2006.07.002

Published
2023-03-02
Cited
How to Cite
M. Rose, M., Christy, R. S., Benitta, T. A., & Kumaran, J. T. T. (2023). Structural, Electrical and Optical Studies of ZnxCu1-xS (x = 0.8, 0.6, 0.4 and 0.2) Nanoparticles. East European Journal of Physics, (1), 228-235. https://doi.org/10.26565/2312-4334-2023-1-30