Analytical Solutions to The Schrödinger Equation with Collective Potential Models: Application to Quantum Information Theory
Abstract
In this study, the energy equation and normalized wave function were obtained by solving the Schrödinger equation analytically utilizing the Eckart-Hellmann potential and the Nikiforov-Uvarov method. Fisher information and Shannon entropy were investigated. Our results showed higher-order characteristic behavior for position and momentum space. Our numerical results showed an increase in the accuracy of the location of the predicted particles occurring in the position space. Also, our results show that the sum of the position and momentum entropies satisfies the lower-bound Berkner, Bialynicki-Birula, and Mycieslki inequality and Fisher information was also satisfied for the different eigenstates. This study's findings have applications in quantum chemistry, atomic and molecular physics, and quantum physics.
Downloads
References
S.K. Nikiforov, and V.B. Uvarov, Special functions of mathematical Physics, (Birkhauser, Basel, 1988)
P.O. Okoi, C.O. Edet, T.O. Magu and E.P. Inyang, “Eigensolution and Expectation values of the Hulthén and Generalized Inverse Quadratic Yukawa potential”, Jordan Journal of Physics, 15, 137 (2022). https://doi.org/10.47011/15.2.4
I.O. Akpan, E.P. Inyang, E.P. Inyang, and E.S. William, “Approximate solutions of the Schrödinger equation with Hulthen-Hellmann Potentials for a Quarkonium system”, Rev. Mex. Fis. 67, 490 (2021). https://doi.org/10.31349/RevMexFis.67.482
E.S. William, E.P. Inyang, and E.A. Thompson, “Arbitrary -solutions of the Schrödinger equation interacting with Hulthén-Hellmann potential model”, Rev. Mex. Fis. 66, 730 (2020). https://doi.org/10.31349/RevMexFis.66.730
E.P. Inyang , E.P. Inyang, J.E. Ntibi, E.E. Ibekwe, and E.S. William, “Approximate solutions of D-dimensional Klein-Gordon equation with Yukawa potential via Nikiforov-Uvarov method”, Ind. J. Phys. 95, 2793 (2021). https://doi.org/10.1007/s12648-020-01933-x
E. P. Inyang, E. S. William and J.A. Obu, “Eigensolutions of the N-dimensional Schrödinger equation` interacting with Varshni-Hulthen potential model”, Rev. Mex. Fis. 67 (2021), 193. https://doi.org/10.31349/RevMexFis.67.193
E.S. William, E.P. Inyang, I.O. Akpan, J.A. Obu, A.N. Nwachukwu, and E.P. Inyang, “Ro-vibrational energies and expectation values of selected diatomic molecules via Varshni plus modified Kratzer potential model”, Indian Journal of Physics, 96, 3461 (2022). https://doi.org/10.1007/s12648-0222-02308-0
E.P. Inyang, E.P. Inyang, E.S. William, and E.E. Ibekwe, “Study on the applicability of Varshni potential to predict the mass-spectra of the Quark-Antiquark systems in a non-relativistic framework”, Jord. J. Phys. 14, 345 (2021).
E.P. Inyang, A.N. Ikot, E.P. Inyang, I.O. Akpan, J.E. Ntibi, E. Omugbe, and E.S. William, “Analytic study of thermal properties and masses of heavy mesons with quarkonium potential”, Result in Physics, 39, 105754 (2022). https://doi.org/10.1016/j.rinp.2022.105754
E.P. Inyang, and E.O. Obisung, “The study of electronic states of NI and ScI molecules with screened Kratzer Potential”, East Eur. J. Phys. 3, 32 (2022). https://doi.org/10.26565/2312-4334-2022-3-04
C.O. Edet, S. Mahmoud, E.P. Inyang, N. Ali, S.A. Aljunid, R. Endut, A.N. Ikot, and M. Asjad, “Non-Relativistic Treatment of the 2D Electron System Interacting via Varshni-Shukla Potential Using the Asymptoptic Iteration Method”, Mathematics, 10, 2824 (2022). https://doi.org/10.3390/math10152824
M. Abu-Shady, and A.N. Ikot, “Analytic solution of multi-dimensional Schrödinger equation in hot and dense QCD media using the SUSYQM method”, The European Physical Journal Plus, 134, 321 (2019). https://doi.org/10.1140/epjp/i2019-12685-y
A.N. Ikot, U.S. Okorie, P.O. Amadi, C.O. Edet, G.J. Rampho, and R. Sever, “The Nikiforov-Uvarov –Functional Analysis (NUFA) Method: A new approach for solving exponential – Type potentials”, Few-Body System, 62, 9 (2021). https://doi.org/10.1007/s00601-021-021-01593-5
E.P. Inyang, E.S. William, J.E. Ntibi, J.A. Obu, P.C. Iwuji, and E.P. Inyang, “Approximate solutions of the Schrödinger equation with Hulthén plus screened Kratzer Potential using the Nikiforov–Uvarov – functional analysis (NUFA) method: an application to diatomic molecules”, Can. J. Phys. 100(10), 473 (2022), https://doi.org/10.1139/cjp-2022-003
E.P. Inyang, P.C. Iwuji, J.E. Ntibi, E. Omugbe, E.A. Ibanga, and E.S. William, “Quark-antiquark study with inversely quadratic Yukawa potential using Nikiforov-Uvarov-Functional analysis method”, East Eur. J. Phys. 2, 51 (2022). https://doi.org/10.26565/2312-4334-2022-2-05
E.P. Inyang, E.S. William, E. Omugbe, E.P. Inyang, E.A. Ibanga, F. Ayedun, I.O. Akpan, and J.E. Ntibi, “Application of Eckart-Hellmann potential to study selected diatomic molecules using Nikiforov-Uvarov-Functional analysis method”, Revista Mexicana de Fisica ,68, 1 (2022). https://doi.org/10.31349/RevMexFis.68.020401
E.P. Inyang, E.P. Inyang, I.O. Akpan, J.E. Ntibi, and E.S. William, “Analytical solutions of the Schrödinger equation with class of Yukawa potential for a quarkonium system via series expansion method”, European Journal of Applied Physics, 2, 26 (2020). http://dx.doi.org/10.24018/ejphysics.2020.2.6.26
E.P. Inyang, P.C. Iwuji, J.E. Ntibi, E.S. William, and E.A. Ibanga, “Solutions of the Schrodinger equation with Hulthén–screened Kratzer potential: Application to diatomic molecules”, East Eur. J. Phys. 1, 11 (2022). https://doi.org/10.26565/2312-4334-2022-2-02
E.E. Ibekwe, U.S. Okorie, J.B. Emah, E.P. Inyang, and S.A. Ekong, “Mass spectrum of heavy quarkonium for screened Kratzer potential(SKP) using series expansion method”, European Physical Journal Plus, 87, 11 (2021). https://doi.org/10.1140/epjp/s13360-021-01090-y
E.P. Inyang, J. E.Ntibi, O.O. Akintola, E.A. Ibanga, F. Ayedun, and E.S. William, “Analytical solutions to the Schrödinger Equation with a Combined Potential using the Series Expansion Method to Study Selected Diatomic Molecules”, Communication in Physical Science, 8(2),244(2022).
E.P. Inyang, E.P. Inyang, J.E. Ntibi, and E.S. William, Analytical solutions of Schrodinger equation with Kratzer-screened Coulomb potential for a Quarkonium system”, Bulletin of Pure and Applied Sciences, 40, 24 (2021). https://doi.org/10.5958/2320-3218.2021.0002.6
E. Omugbe, “Non-relativistic energy spectrum of the Deng-Fan Oscillator via the WKB Approximation method”, Asian Journal of Physical and Chemical Sciences, 268, 26 (2020). https://doi.org/10.9734/ajopacs/2020/v8i130107
E. Omugbe, O.E. Osafile, E.P. Inyang, and A. Jahanshir, “Bound state solutions of the hyper-radial Klein-Gordon equation under the Deng-Fan potential by WKB and SWKB methods”, Physica Scripta, 96(12), 125408 (2021). https://doi.org/10.1088/1402-4896/ac38d4
E. Omugbe, O.E. Osafile, I.B. Okon, E.P. Inyang, E.S. William, and A. Jahanshir, “Any L-state energy of the spinless Salpeter equation under the Cornell potential by the WKB Approximation method: An Application to mass spectra of mesons”, Few-Body Systems 63, 6 (2022). https://doi.org/10.1007/s00601-021-01705-1
S.H. Dong, and M. Cruz-Irisson, ”Energy spectrum for a modified Rosen-Morse potential solved by proper quantization rule and its thermodynamic properties”, Journal of Mathematical Chemistry, 50, 881 (2012). https://doi.org/10.1007/s10910-011-9931-3
C.A. Onate, M.C. Onyeaju, E. Omugbe, I.B. Okon, and O.E. Osafile, “Bound state solutions and thermal properties of the modifed Tietz–Hua potential”, Sci. Rep. 11, 2129 (2021). https://doi.org/10.1038/s41598-021-81428-9
U.M. Ukewuihe, C.P. Onyenegecha, S.C. Udensi, C.O. Nwokocha, C.J. Okereke, I.J. Njoku, and A.C. Illoanya, “Approximate solutions of Schrodinger equation in D Dimensions with the modified Mobius square plus Hulthen potential”, Mathematics and computational science, 3, (2021). https://doi.org/10.30511/mcs.2021.527027.1020
R. Sahadevan, and P. Prakash, “Exact solution of certain time fractional nonlinear partial differential equations”, Nonlinear Dynamics, 85, 659 (2016). https://doi.org/10.1007/s11071-016-2714-4
R.L. Greene, and C. Aldrich, “Variational wave functions for a screened Coulomb potential”, Phys. Rev. A, 14, 2363 (1976). https://doi.org/10.1103/PhysRevA.14.2363
C.L. Pekeris, “The Rotation-Vibration Coupling in Diatomic Molecules”, Phys. Rev. 45, 98 (1934). https://doi.org/10.1103/PhysRev.45.98
C.S. Jia, T. Chen, and L.G. Cui, “Approximate analytical solutions of the Dirac equation with the generalized Poschl-Teller potential including the pseudo-centrifugal term”, Phys. Lett. A, 373, 1621 (2009). https://doi.org/10.1016/j.physleta.2009.03.006
E.P. Inyang, E.O. Obisung, P.C. Iwuji, J.E. Ntibi, J. Amajama, and E.S. William, “Masses and thermal properties of a charmonium and Bottomonium mesons”, J. Nig. Soc. Phys. Sci. 4, 884 (2022). https://doi.org/10.46481/jnsps.2022.884
E.P. Inyang, E.P. Inyang, I.O. Akpan, J.E. Ntibi, and E.S. William, “Masses and thermodynamic properties of a Quarkonium system”, Canadian J. Phys. 99(11), (2021). https://doi.org/10.1139/cjp-2020-0578
E. Omugbe, O.E. Osafile, I.B. Okon, E.S. Eyube, E.P. Inyang, U.S. Okorie, A. Jahanshir, and C.A. Onate, “Non- relativistic bound state solutions with -deformed Kratzer-type potential using the super-symmetric WKB method: application to theoretic-information measures”, European Physical Journal D, 76, 72 (2022). https://doi.org/10.1140/epjd/s10053-022-00395-6
A. Nagy, and S. Liu, “Local wave-vector, Shannon and Fisher information”, Phys. Lett. A, 372, 1654 (2008). https://doi.org/10.1016/j.physleta.2007.10.055
C.E. Shannon, “A Mathematical Theory of Communication”, Bell System Technical Journal, Bell Syst. Tech. J. 27, 623 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
S. Kullberg, and R.A. Leibler, “On Information and Sufficiency”, Ann. Math. Stat. 22, 79 (1951). https://www.jstor.org/stable/2236703
S. Kullberg, Information Theory and Statistics, (Wiley, New York, 1959).
R.A. Fisher, “Theory of Statistical Estimation”, Mathematical Proceedings of the Cambridge Philosophical Society, 22(5), 700 (1925). https://doi.org/10.1017/s0305004100009580
S.B. Sears, R.G. Parr, and U. Dinur, “On the Quantum-Mechanical Kinetic Energy as a Measure of the Information in a Distribution”, Isreal J. Chem. 19, 165 (1980). https://doi.org/10.1002/ijch.198000018
S. Majumdar, N. Mukherjee, and A.K. Roy, “Information entropy and complexity measure in generalized Kratzer potential”, Chem. Phys. Lett. 716, 257 (2019). https://doi.org/10.1016/j.cplett.2018.12.032
G.H. Sun, and S.H. Dong, “Quantum information entropies of the eigenstates for a symmetrically trigonometric Rosen–Morse potential”, Phys. Scr. 87, 045003 (2013). https://doi.org/10.1088/0031-8949/87/04/045003
I. Bialynicki-Birula, and J. Mycielski, “Uncertainty relations for information entropy in wave mechanics”, Commun. Math. Phys. 44, 129 (1975). https://doi.org/10.1007/BF01608825
R. Santana-Carrilloria, J.S. Gonzalez-Flores, E. Magana-Espinal, L.F. Quezada, G.-H. Sun, and S.-H. Dong, “Quantum Information Entropy of Hyperbolic potentials in Fractional Schrodinger equation”, Entropy, 24, 1516 (2022). https://doi.org/10.3390/e24111516
A. Boumali, and M. Labidi, “The Solutions on One-Dimensional Dirac Oscillator with Energy-Dependent Potentials and Their Effects on the Shannon and Fisher Quantities of Quantum Information Theory”, J. Low Temp. Phys. 204, 24 (2021). https://doi.org/10.1007/s10909-021-02596-6
C. Martanez-Flores, “Shannon entropy and Fisher information for endohedral confined one- and two-electron atoms”, Physics Letters A, 386, 126988 (2021). https://doi.org/10.1016/j.physleta.2020.126988
C.O. Edet, E.B. Ettah, S.A. Aljunid, R. Endut, N. Ali, A.N. Ikot, and M. Asjad, “Global Quantum information-Theoretic measures in the Presence of magnetic and Aharanov-Bohm (AB) fields”, Symmetry, 14(5), 976 (2022). https://doi.org/10.3390/sym14050976
O. Olendski, “Quantum information measures of the Aharonov-Bohm ring in uniform magnetic fields”, Phys. Lett. A, 383, 1110 (2019). https://doi.org/10.1016/j.physleta.2018.12.040
C.A. Onate, M.C. Onyeaju, and I.B. Okon, “Shannon entropy for Feiberg-Horodecki equation and thermal properties of improved Wei potential model”, Open Physics, 19, 519 (2021). https://doi.org/10.1515/phys-2021-0038
C.A. Onate, M.C. Onyeaju, D.T. Bankole, and A.N. Ikot, “Eigensolution techniques,expectation values and Fisher information of Wei potential function”, J. Mol. Modeling, 26, 311 (2020). https://doi.org/10.1007/s00894-020-04573-4
C.A. Onate, M.C. Onyeaju, A.N. Ikot, O. Ebomwonyi, and J.O.A. Idiodi, “Fisher information and uncertainty relations for potential family”, Int. J. Quantum Chem. 119(19), e25991 (2019). https://doi.org/10.1002/qua.25991
C.A. Onate, M.C. Onyeaju, E.E. Ituen, A.N. Ikot, O. Ebomwonyi, J.O. Okoro, and K.O. Dopamu”, Eigensolutions, “Shannon entropy and information energy for modified Tietz-Hua potential”, Indian J. Phys. 92, 487 (2018). https://doi.org/10.1007/s12648-017-1124-x
J.O.A. Idiodi, and C.A. Onate, “Entropy, Fisher information and Variance with Frost-Musulin Potential”, Commun. Theor. Phys. 66, 269 (2016). https://doi.rg/10.1088/0253-6102/66/3/269
C.A. Onate, O. Adebimpe, B.O. Adebesin, and A.F. Lukman, “Information-theoretic measure of the hyperbolical exponential-type potential”, Turk. J. Phys. 42(4), 402 (2018). https://doi.org/10.3906/fiz-1802-40
C.O. Edet, F.C.E. Lima, C.A.S. Almeida, N. Ali, and M. Asjad, “Quantum information of the Aharanov-Bohm ring with Yukawa interaction in the Presence of Disclination”, Entropy, 24, 1059 (2022). https://doi.org/10.3390/e24081059
A.N. Ikot, G.J. Rampho, P.O. Amadi, M.J. Sithole, U.S. Okorie, and M.L. Lekala, “Shannon entropy and Fisher information-theoretic measures for Mobius square potential”, Eur. Phys. J. Plus, 135, 503 (2020). https://doi.org/10.1140/epjp/s13360-020-00525-2
P.O. Amadi, A.N. Ikot, A.T. Ngiangia, U.S. Okorie, G.J. Rampho, and H.Y. Abdullah, “Shannon entropy and Fisher information for screened Krattzer potential”, Intl. J. Quantum Chem. 120(14), e26246 (2020). https://doi.org/10.1002/qua.26246
A.N. Ikot, G.J. Rampho, P.O. Amadi, U.S. Okorie, M.J. Sithole, and M.L. Lekala, “Quantum information-entropic measures for exponential – type potential”, Results in Physics 18, 103150 (2020). https://doi.org/10.1016/j.rinp.2020.103150
A.N. Ikot, G.J. Rampho, P.O. Amadi, U.S. Okorie, M.J. Sithole, and M.L. Lekala, “Theoretic quantum information entropies for the generalized hyperbolic potential”, Intl. J. Quantum Chem. 120(24), e26410 (2020). https://doi.org/10.1002/qua.26410
C. Eckart, “The penetration of a potential barrier by electrons”, Phys. Rev. 35, 1303 (1930). https://doi.org/10.1103/PhysRev.35.1303
B.J. Falaye, “Any l-state solutions of the Eckart potential via asymptotic iteration method”, Central Euro. J. Phys. 10, 960 (2012). https://doi.org/10.2478/s11534-012-0047-6
E.P. Inyang, J.E. Ntibi, E.P. Inyang, E.S. William, and C.C. Ekechukwu, “Any L-state solutions of the Schrödinger equation interacting with class of Yukawa-Eckart potentials”, Int. J. Innov. Res. Sci. Eng. Tech. 11(7), (2020).
S.H. Dong, W.C. Qiang, G.H. Sun, and V.B. Bezerra, J. Phys. A: Mathematical and Theoretical, 40, 10535 (2007). https://doi.org/10.1088/1751-8113/40/34/010
H. Hellmann, “A New Approximation Method in the Problem of Many Electrons”, J. Chem. Phys. 3, 61 (1935). https://doi.org/10.1063/1.1749559
C.A. Onate, J.O. Ojonubah, A. Adeoti, E.J. Eweh, and M. Ugboja, “Approximate Eigen Solutions of D.K.P. and Klein-Gordon Equations with Hellmann Potential”, Afr. Rev. Phys, 9, 497 (2014). https://core.ac.uk/download/pdf/162156005.pdf
S.M. Ikhdair, and R. Sever, “A perturbative treatment for the bound states of the Hellmann potential”, Journal of Molecular Structure, THEOCHEM, 809(1-3), 103 (2007). https://doi.org/10.1016/j.theochem.2007.01.019
Hamzavi, K.E. Thylwe, and A.A. Rajabi, “Approximate Bound States Solution of the Hellmann Potential”, Commun Theor Phys, 60, 8 (2013). https://doi.org/10.1088/0253-6102/60/1/01
C.A. Onate, O. Ebomwonyi, K.O. Dopamu, J.O. Okoro, and M.O. Oluwayemi, “Eigen solutions of the D-dimensional Schrodinger equation with inverse trigonometry scarf potential and Coulomb potential”, Chin. J. Phys, 56(5), 2538 (2018). https://doi.org/10.1016/j.cjph.2018.03.013
B.I. Ita, “Solutions of the Schrodinger equation with inversely quadratic Hellmann plus Mie-type potential using Nikiforov- Uvarov method”, International Journal of Recent Advances in Physics. 2(4), 25 (2013). https://wireilla.com/physics/ijrap/papers/2413ijrap02.pdf
E.P. Inyang, E.S. William, J.O. Obu, B.I. Ita, E.P. Inyang, and I.O. Akpan, “Energy spectra and expectation values of selected diatomic molecules through the solutions of Klein-Gordon equation with Eckart-Hellmann potential model”, Molecular Physics. 119(23), e1956615 (2021). https://doi.org/10.1080/00268976.2021.1956615
E.P. Inyang, E.O. Obisung, E.S. William, and I.B. Okon, “Non-Relativistic study of mass spectra and thermal properties of a quarkonium system with Eckart-Hellmann potential”, East Eur. J. Phys. 3, 114 (2022)114. https://doi.org/10.26565/2312-4334-2022-3-14
E.S. William, E.P. Inyang, J.E. Ntibi, J.A. Obu, and E.P. Inyang, “Solutions of the Non-relativistic Equation Interacting with the Varshni-Hellmann potential model with some selected Diatomic molecules”, Jordan Journal of Physics, 15, 193 (2022). https://doi.org/10.47011/15.2.8
E.P. Inyang, F. Ayedun, E.A. Ibanga, K.M. Lawal, I.B. Okon, E.S. William, O. Ekwevugbe, C.A. Onate, A.D. Antia, and E.O. Obisung, “Analytical Solutions of the N-Dimensional Schrödinger equation with modified screened Kratzer plus Inversely Quadratic Yukawa potential and Thermodynamic Properties of selected Diatomic Molecules”, Results in Physics, 43, 106075 (2022). https://doi.org/10.1016/j.rinp.2022.106075
O. Ebomwonyi, C.A. Onate, M.C. Onyeaju, and A.N. Ikot, “Any l-states solutions of the Schrodinger equation interacting with Hellmann-generalized Morse potential model”, Karbala Intl. J. Mod. Sc, 3, 59 (2017). http://eprints.lmu.edu.ng/1613/2/ONATE%2038.pdf
C.O. Edet, and A.N. Ikot, “Shannon information entropy in the Presence of magnetic and Aharanov-Bohm (AB) fields”, Eur. Phys. J. Plus, 136, 432 (2021). https://doi.org/10.1140/epjp/s13360-021-01438-4
W.A. Yahya, K.J. Oyewuni, and K.D. Sen, “Position and momentum information-theoretic measures of the pseudoharmonic potential”, Int. J. Quantum Chem. 115, 1543 (2014). https://doi.org/10.1002/qua.24971
S.H. Patil, K.D. Sen, N.A. Watson, and H.E. Montgomery Jr, “Characteristic features of net information measures for constrained Coulomb potentials”, J. Phys. B: At. Mol. Opt. Phys. 40, 2147 (2007). https://doi.org/10.1088/0953-4075/40/11/016
Y.J. Shi, G.H. Sun, J. Jing, and S.H. Dong, “Shannon and Fisher entropy measures for a parity-restricted harmonic oscillator”, Laser Phys. 27, 125207 (2017).
D. Chakraborty, P.W. Ayers, in: Statistical Complexity: Applications in Electronic Structure, edited by K.D. Sen, (Springer, 2012).
E. Romera, P. Sanchez-Moreno, J.S. Dehesa, “The Fisher information of single-particle systems with a central potential”, Chem. Phys. Lett. 414, 468 (2005). https://doi.org/10.1016/j.cplett.2005.08.032
Copyright (c) 2022 Funmilayo Ayedun, Etido P. Inyang, Efiong A. Ibanga, Kolawole M. Lawal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).