Exotic Structure of 17Ne-17N and 23Al-23Ne Mirror Nuclei
Abstract
In terms of the core nucleus plus valence nucleon, shell-model calculations using two model spaces and interactions, the relationship between a nucleus' proton skin, and the difference in proton radii of mirror pairs of nuclei with the same mass number are investigated. In this work, two pairs of mirror nuclei will be studied: 17Ne-17N and 23Al-23Ne. For 17Ne-17N nuclei, p-shell and mixing of psd orbits are adopted with Cohen-Kurath (ckii) and psdsu3 interactions. While for 23Al-23Ne, the sd-shell and sdpf shell are adopted with the universal shell model (USD) and sdpfwa interactions. Also, the ground state density distributions, elastic form factors, and root mean square radii of these pairs' nuclei are studied and compared with available experimental data. . In general, it was found that the rms radius of the valence proton(s) is larger than that of the valence neutron(s) in its mirror nucleus. The results show that these nuclei have the exotic structure of a halo or skin.
Downloads
References
T. Otsuka, “Emerging concepts in nuclear structure based on the shell model,” Physics, 4(1), 258 (2022). https://doi.org/10.3390/physics4010018
H. Jian, Y. Gao, F. Dai, J. Liu, X. Xu, C. Yuan, K. Kaneko, ,et al, “β-Delayed γ Emissions of 26P and Its Mirror Asymmetry,” Symmetry, 13(12), 2278, (2021). https://doi.org/10.3390/sym13122278
G. Agnelli, Master Degree in Physics, Universita Degli Studi di Milano, 2019. https://www0.mi.infn.it/~jroca/doc/thesis/thesis-giancarlo-agnelli.pdf
I. Angeli, and K. P. Marinova, “Table of experimental nuclear ground state charge radii: An update,” At. Data Nucl. Data Tables, 99(1), 69 (2013). https://doi.org/10.1016/j.adt.2011.12.006
M. Bao, Y. Lu, Y. M. Zhao, and A. Arima, “Predictions of nuclear charge radii,” Phys. Rev. C, 94(6), (2016). https://doi.org/110.1103/PhysRevC.94.064315
H. Simon, “The ELISe experiment at FAIR,” Nucl. Phys. A, 787(1–4), 102 (2007). https://doi.org/10.1016/j.nuclphysa.2006.12.020
A.N. Antonov et al., “The electron–ion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR) – A conceptual design study,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 637(1), 60 (2011). https://doi.org/10.1016/j.nima.2010.12.246
T. Suda, and M. Wakasugi, Prog. Part. Nucl. Phys. 55, 417 (2005). https://doi.org/10.1016/j.ppnp.2005.01.008
T. Motobayashi, and H. Sakurai, “Research with fast radioactive isotope beams at RIKEN,” Prog. Theor. Exp. Phys. 2012(1), 2012. https://doi.org/10.1093/ptep/pts059
M. Wakasugi et al., “Construction of the SCRIT electron scattering facility at the RIKEN RI Beam Factory,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 317, 668 (2013).
M.K. Gaidarov, I. Moumene, A.N. Antonov, D.N. Kadrev, P. Sarriguren, and E.M. de Guerra, “Proton and neutron skins and symmetry energy of mirror nuclei,” Nucl. Phys. A, vol. 1004, p. 122061, 2020. https://doi.org/10.1016/j.nuclphysa.2020.122061
A. Boso, S.M. Lenzi, F. Recchia, J. Bonnard, S. Aydin, M.A. Bentley, B. Cederwall, et al, “Isospin symmetry breaking in mirror nuclei 23mg-23Na,” Acta Phys. Pol. B, 48(3), 313 (2017). https://doi.org/10.5506/APhysPolB.48.313
J. Ekman, D. Rudolph, C. Fahlander, R.J. Charity, W. Reviol, D.G. Sarantites, V. Tomov, et al, “The A = 51 mirror nuclei 51Fe and 51Mn,” Eur. Phys. J. A, 9(1), 13 (2000). https://doi.org/10.1007/s100500070050
K. Wimmer, W. Korten, P. Doornenbal, T. Arici, P. Aguilera, A. Algora, T. Ando, et al., “Shape Changes in the Mirror Nuclei Kr 70 and Se 70,” Phys. Rev. Lett. 126(7), 2021. https://doi.org/10.1103/PhysRevLett.126.072501
B.N. Giv, and S. Mohammadi, “Calculating Energy Levels in 49Mn/49Cr Mirror Nuclei with OXBASH Code,” Comput. Biol. Bioinforma, 5(5), 70 (2017), https://doi.org/10.11648/j.cbb.20170505.13
F. Sammarruca, “Proton skins, neutron skins, and proton radii of mirror nuclei,” Front. Phys. Front. Phys. 6, 90 (2018). https://doi.org/10.3389/fphy.2018.00090
K. Arai, Y. Ogawa, Y. Suzuki, and K. Varga, “Structure of the mirror nuclei 9Be and 9B in a microscopic cluster model,” Phys. Rev. C - Nucl. Phys. 54(1), 132 (1996). https://doi.org/10.1103/PhysRevC.54.132
T. De Forest, Jr., and J. D. Walecka, “Electron scattering and nuclear structure”, Adv. Phys. 15, 1 (1966). https://doi.org/10.1080/00018736600101254
J.P. Glickman, W. Bertozzi, T.N. Buti, S. Dixit, F.W. Hersman, C.E. Hyde-Wright, M.V. Hynes, et al., “Electron scattering from Be 9”, Phys. Rev. C, 43(4), 1740 (1991). https://doi.org/10.1103/PhysRevC.43.1740
R.A. Radhi, “Perturbative role in the inelastic electron scattering from 29Si”, Eur. Phys. J. A, A34, 107 (2007). https://doi.org/10.1140/epja/i2007-10488-0
B.A. Brown, R. Radhi, and B. H. Wildenthal, Physics Reports, 101(5), 313 (1983). https://doi.org/10.1016/0370-1573(83)90001-7
R.A. Radhi, A.K. Hamoudi, and W.Z. Majeed, “Calculation of The Nuclear Matter Density Distributions and Form Factors For The Ground State of P”, Iraqi J. Sci. 54(2), 349 (2013). https://www.iasj.net/iasj/download/47f853b71cc4457e
B.A. Brown et al., Oxbash for Windows PC (MSU-NSCL report number 1289) 1 (2005).
S. Cohen, and D. Kurath, Nucl. Phys. 73, 1 (1965). https://doi.org/10.1016/0029-5582(65)90148-3
J.P. Elliott, Proc. Roy. Soc. A, 245, 1240 (1958). https://doi.org/10.1098/rspa.1958.0072
A. Ozawa, T. Suzuki, and I. Tanihata, “Nuclear size and related topics,” Nucl. Phys. A, 693(1–2), 32 (2001). https://doi.org/10.1016/S0375-9474(01)01152-6
B.A. Brown, and B.H. Wildenthal, Ann. Rev. Nucl. Part. Soi. 38, 29 (1988). https://doi.org/10.1146/annurev.ns.38.120188.000333
E.K. Warburton, J.A. Becker, and B.A. Brown, “Mass systematics for A=29–44 nuclei: The deformed A∼32 region”, Phys. Rev. C, 41, 1147 (1990). https://doi.org/10.1103/PhysRevC.41.1147
R.N. Panda, M. Panigrahi, M.K. Sharma, and S.K. Patra, “Evidence of a Proton Halo in 23Al: A Mean Field Analysis,” Phys. At. Nucl. 81(4), 417 (2018). https://doi.org/10.1134/S1063778818040154
K. Riisager, “Halos and related structures,” Phys. Scr. 2013, 014001 (2013). https://doi.org/10.1088/0031-8949/2013/T152/014001
K. Tanaka, M. Fukuda, M. Mihara, M. Takechi, D. Nishimura, T. Chinda, T. Sumikama, et al, “Density distribution of 17Ne and possible shell-structure change in the proton-rich sd-shell nuclei,” Phys. Rev. C, 82(4), 44309 (2010). https://doi.org/10.1103/PhysRevC.82.044309
F. De-Qing, M. Chun-Wang, M. Yu-Gang, C. Xiang-Zhou, C. Jin-Gen, C. Jin-Hui, G. Wei, et al, “One-Proton Halo Structure in 23Al,” Chinese Phys. Lett. 22(3), 572 (2005). https://doi.org/10.1088/0256-307X/22/3/015
Copyright (c) 2022 Ruqaya A. Mohammed, Wasan Z. Majeed
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).