Study of the Nuclear Structure for Some Nuclei Using Self-Consistent RPA Calculations with Skyrme-Type Interaction

Keywords: Skyrme Forces, Hartree-Fock (HF), Random Phase Approximation (RPA), Higher Modes Excited State, Skyrme Energy Density


       In the present research, some static and dynamic nuclear properties of the closed-shell nuclei; 58Ni, 90Zr, 116Sn, and 144Sm nuclei have been studied using the Random Phase Approximation (RPA) method framework and different Skyrme parameterizations, particularly SyO-, Sk255, SyO+, SLy4, BSk17, and SLy5. In particular, in studies of static properties such as nuclear densities for neutrons, protons, mass, and charge densities with their corresponding rms radii, the single-particle nuclear density distributions All the obtained results agreed well with the relevant experimental data. Concerning the dynamic properties, the excitation energy, transition density, and giant resonance modes for the excitation to the low-lying negative partite excited states 1–, 3–, 5–, and 7– have also been studied. The findings indicate that estimates of RPA with Skyrme-type interactions are a good way to describe the properties of the structure of even-even, closed-shell nuclei.


Download data is not yet available.


A.L. Fetter, and J.D. Walecka, Quantum Theory of Many-Particle Systems, (Dover Publications, Mineola, NY, 2003).

J.W. Negele, “The mean-field theory of nuclear structure and dynamics,” Rev. Mod. Phys. 54(4), 913 (1982).

M. Bender, P.-H. Heenen, and P.-G. Reinhard, “Self-consistent mean-field models for nuclear structure,” Rev. Mod. Phys. 75(1), 121 (2003).

J.R. Stone, and P.G. Reinhard, Prog. Part. Nucl. Phys. 58(2), 587 (2007).

K.S. Krane, Introductory Nuclear Physics, 3rd ed. (John Wiley Sons, New York, 1987).

A.A. Alzubadi, A.J. Alhaideri, and N.F. Lattoofi, “Study of static and dynamic properties of even-even 14–24O and 38–54Ca in the frame of Random Phase Approximation (RPA) method with different Skyrme parameterizations,” Phys. Scr. 96(5), 55304 (2021).

S.S.M. Wong, Introductory nuclear physics, (John Wiley & Sons, 2008).

W. Greiner, and J.A. Maruhn, Nuclear models, (Springer, 1996).

D.R. Hartree, “The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods,” in: Mathematical Proceedings of the Cambridge Philosophical Society, 24(1), 1928, pp. 89-110, (Cambridge University Press, 2008).

G. Co’, and S. De Leo, “Hartree–Fock and random phase approximation theories in a many-fermion solvable model,” Mod. Phys. Lett. A, 30(36), 1550196 (2015).

E.B. Suckling, Ph.D. dissertation, The University of Surrey, March 2011.

D. Vautherin, and D.M. Brink, “Hartree-Fock calculations with Skyrme’s interaction,” Phys. Lett. B, 32(3), 149 (1970).

B.A. Brown, S.E. Massen, and P.E. Hodgson, “Proton and neutron density distributions for A= 16-58 nuclei,” J. Phys. G. Nucl. Phys. 5(12), 1655 (1979).

T.H.R. Skyrme, “The effective nuclear potential,” Nucl. Phys. 9(4), 615 (1958).

E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, “A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities,” Nucl. Phys. A, 635(1-2), 231 (1998).

K.L.G. Heyde, “The nuclear shell model,” in: The Nuclear Shell Model, (Springer, Berlin, Heidelberg, 1994), pp. 58-154.

D. Vautherin, and D.M.T. Brink, “Hartree-Fock calculations with Skyrme’s interaction. I. Spherical nuclei,” Phys. Rev. C, 5(3), 626 (1972).

D.J. Rowe, Nuclear Collective Motion, (Methuen and Co, Ltd., London, 1970), vol. 211.

P. Sarriguren, E.M. de Guerra, and R. Nojarov, “Spin M1 excitations in deformed nuclei from self-consistent Hartree-Fock plus random-phase approximation,” Phys. Rev. C, 54(2), 690 (1996).

H. Nakada, “Mean-field and RPA approaches to stable and unstable nuclei with semi-realistic NN interactions,” in Journal of Physics: Conference Series, 445(1), 012011 (2013).

P.J. Brussaard, and P.W.M. Glaudemans, Shell-model applications in nuclear spectroscopy, (North-Holland publishing company, 1977).

P. Ring, and P. Schuck, Problems of many bodies, (Springer-Verlag, New York, 1980).

D.R. de Oliveira, “The Hartree-Fock and the random phase approximations applied to Ne 20, Si 28 and Ar 36,” Rev. Bras. Física, 1(3), 403 (1971).

B.A. Brown, “Lecture notes in nuclear structure physics,” Natl. Super Conduct. Cyclotr. Lab. 11, (2005).

I. Angeli, and K.P. Marinova, “Table of experimental nuclear ground state charge radii: An update,” At. Data Nucl. Data Tables, 99(1), 69 (2013).

Lomonosov Moscow State University, Skobeltsyn Institute Of Nuclear Physics, Center Dannykh Fotoyadernykh Experimentov,

H. De Vries, C.W. De Jager, and C. De Vries, “Nuclear charge-density-distribution parameters from elastic electron scattering,” At. Data Nucl. Data Tables, 36(3), 495 (1987).

Myanmar Education Research and Learning Portal, H.M. Thandar, and K.S. Myint, “Calculation of Form Factor for 116Sn and 118Sn by Using Three-Parameter Gaussian Model Density Distribution.”

S. Goriely, S. Hilaire, M. Girod, and S. Péru, “First Gogny-Hartree-Fock-Bogoliubov nuclear mass model,” Phys. Rev. Lett. 102(24), 242501 (2009).

B.K. Agrawal, S. Shlomo, and A.I. Sanzhur, “Self-consistent Hartree-Fock based random phase approximation and the spurious state mixing,” Phys. Rev. C, 67(3), 034314 (2003).

P.-G. Reinhard, D.J. Dean, W. Nazarewicz, J. Dobaczewski, J.A. Maruhn, and M. R. Strayer, “Shape coexistence and the effective nucleon-nucleon interaction,” Phys. Rev. C, 60(1), 14316 (1999).

P. Chomaz and N. Frascaria, “Multiple phonon excitation in nuclei,” P00020240, 1993.

International Atomic Energy Agency - Nuclear Data Section. Vienna International Centre, Vienna, Austria.

How to Cite
Kareem, N. M., & Alzubadi, A. A. (2022). Study of the Nuclear Structure for Some Nuclei Using Self-Consistent RPA Calculations with Skyrme-Type Interaction . East European Journal of Physics, (4), 57-71.