The Study of Electronic States of Ni and ScI Molecules with Screened Kratzer Potential

  • Etido Inyang Department of Physics, National Open University of Nigeria, Jabi, Abuja, Nigeria https://orcid.org/0000-0002-5031-3297
  • Effiong Obisung Department of Physics, University of Calabar, Calabar, Nigeria
Keywords: Schrödinger equation, Nikiforov-Uvarov method, screened Kratzer Potential, molecules

Abstract

In this study, the analytical solutions of the Schrödinger equation with the screened Kratzer potential model is solved using the well-known Nikiforov-Uvarov method. The energy spectrum and the normalized wave function with the Greene-Aldrich approximation to the centrifugal term are obtained. The energy spectrum is used to generate eigenvalues for X3Σ- state of NI and X1Σ+ state of ScI molecules respectively. The calculated results agree excellently with the experimental data. This research finds application in chemistry, industry, molecular physics and studies on magnetocaloric effect for several molecules. Our findings also demonstrate that the approximation scheme is well suited for this potential.

Downloads

Download data is not yet available.

References

E.P. Inyang, E.P. Inyang, J. Kamiliyus, J.E. Ntibi, and E.S. William, “Diatomic molecules and mass spectrum of Heavy Quarkonium system with Kratzer-screened Coulomb potential (KSCP) through the solutions of the Schrodinger equation”, European Journal of Applied Physics, 3, 55 (2021), https://doi.org/10.24018/ejphysics.2021.3.2.61

R. Horchani, H. Jelassil, A.N. Ikot, and U.S. Okorie, “Rotation vibration spectrum of potassium molecules via the improved generalized Poschl-Teller oscillator, International”, Journal of Quantum Chemistry, 121(7), e26558 (2020), https://doi.org/10.1002/qua.26558

E. Omugbe, O.E. Osafile, I.B. Okon, E.P. Inyang, E.S. William, and A. Jahanshir, “Any l-state energy of the spinless Salpeter equation under the Cornell potential by the WKB Approximation method: An Application to mass spectra of mesons”, Few-Body Systems, 63, 7 (2022), https://doi.org/10.1007/s00601-021-01705-1

A.N. Ikot, C.O. Edet, P.O. Amadi, U.S. Okorie, G.J. Rampho, and H.Y. Abdullah, “Thermodynamic function for diatomic molecules with modified Kratzer plus screened Coulomb potential”, Indian Journal Physics, 159, 11 (2020),

E.P. Inyang, E.P. Inyang, I.O. Akpan, J.E. Ntibi, and E.S. William, “Masses and thermodynamic properties of a Quarkonium system”, Canadian Journal Physics, 99, 990 (2021), https://doi.org/10.1139/cjp-2020-0578

E.P. Inyang, E.S. William, E. Omugbe, E.P. Inyang, E.A. Ibanga, F. Ayedun, I.O. Akpan, and J.E. Ntibi, “Application of Eckart-Hellmann potential to study selected diatomic molecules using Nikiforov-Uvarov-Functional analysis method”, Revista Mexicana de Fisica, 68, 1 (2022), https://doi.org/10.31349/RevMexFis.68.020401

C.O. Edet, S. Mahmoud, E.P. Inyang, N. Ali, S.A. Aljunid, R. Endut, A.N. Ikot, and M. Asjad, “Non-Relativistic Treatment of the 2D Electron System Interacting via Varshni-Shukla Potential Using the Asymptoptic Iteration Method”, Mathematics. 10, 2824 (2022), https://doi.org/10.3390/math10152824

M. Abu-Shady, and E.M. Khokha, “Heavy-Light mesons in the non-relativistic Quark model using Laplace Transformation method with the Generalized Cornell potential”, Advances in high energy Physics, 12, 345 (2018), https://doi.org/10.1155/2018/7032041

M. Abu-Shady, and A.N. Ikot, Analytic solution of multi-dimensional Schrödinger equation in hot and dense QCD media using the SUSYQM method, The European Physical Journal Plus, 134, 7 (2019), https://doi.org/10.1140/epjp/i2019-12685-y

E.P. Inyang, E.S. William, and J.A. Obu, “Eigensolutions of the N-dimensional Schrödinger equation` interacting with Varshni-Hulthen potential model”, Revista Mexicana De Fisica, 67, 193 (2021), https://doi.org/10.31349/RevMexFis.67.193

C.O. Edet, P.O. Okoi, A.S. Yusuf, P.O. Ushie, and P.O. Amadi, “Bound state solutions of the generalized shifted Hulthen potential”, Indian Journal of physics, 95, 471 (2021), https://doi.org/10.1007/s12648-019-01650-0

I.O. Akpan, E.P. Inyang, E.P. Inyang, and E.S. William, “Approximate solutions of the Schrödinger equation with Hulthen-Hellmann Potentials for a Quarkonium system”, Revista Mexica De Fisica, 67, 482 (2021), https://doi.org/10.31349/RevMexFis.67.482

E.S. William, E.P. Inyang, and E.A. Thompson, Arbitrary l-solutions of the Schrödinger equation interacting with Hulthén-Hellmann potential model, Revista Mexicana Fisica, 66, 730 (2020), https://doi.org/10.31349/RevMexFis.66.730

S.K. Nikiforov, and V.B. Uvarov, Special functions of Mathematical Physics, (Birkhauser, Basel, 1988)

E.P. Inyang, E.P. Inyang, J.E. Ntibi, E.E. Ibekwe, and E.S. William, “Approximate solutions of D-dimensional Klein-Gordon equation with Yukawa potential via Nikiforov-Uvarov method”, Indian Journal of Physics, 7 (2021), https://doi.org/10.1007/s12648-020-01933-x

A.N. Ikot, U.S. Okorie, P.O. Amadi, C.O. Edet, G.J. Rampho, and R. Sever, “The Nikiforov-Uvarov – Functional Analysis (NUFA) Method: A new approach for solving exponential-Type potentials”, Few-Body System, 62, 9 (2021), https://doi.org/10.1007/s00601-021-01593-5

E.P. Inyang, P.C. Iwuji, J.E. Ntibi, E.S. William, and E.A. Ibanga, “Solutions of the Schrodinger equation with Hulthen –screened Kratzer potential: Application to diatomic molecules”, East Eur. J. Physics, 1, 12 (2022), https://periodicals.karazin.ua/eejp/article/view/18409/16804

E.E. Ibekwe, U.S. Okorie, J.B. Emah, E.P. Inyang, and S.A. Ekong, “Mass spectrum of heavy quarkonium for screened Kratzer potential (SKP) using series expansion method”, European Physics Journal Plus, 87, 136 (2021), https://doi.org/10.1140/epjp/s13360-021-01090-y

E.M. Khokha, M. Abushady, and T.A. Abdel-Karim, “Quarkonium masses in the N-dimensional space using the Analytical Exact Iteration method”, International Journal of Theoretical and Applied Mathematics, 2, 86 (2016), https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijtam.20160202.19.pdf

E. Omugbe, O.E. Osafile, I.B. Okon, E.S. Eyube, E.P. Inyang, U.S. Okorie, A. Jahanshir, and C.A. Onate, “Non-relativistic bound state solutions with α-deformed Kratzer-type potential using the super-symmetric WKB method: application to theoretic-information measures”, European Physical Journal D, 76, 72 (2022), https://doi.org/10.1140/epjd/s10053-022-00395-6

E. Omugbe, O.E. Osafile, E.P. Inyang, and A. Jahanshir, “Bound state solutions of the hyper-radial Klein-Gordon equation under the Deng-Fan potential by WKB and SWKB methods”, Physica Scripta, 96, 125408 (2021), https://doi.org/10.1088/1402-4896/ac38d4

E.P. Inyang, E.S. William, J.E. Ntibi, J.A. Obu, P.C. Iwuji, and E.P. Inyang, “Approximate solutions of the Schrodinger equation with Hulthen plus screened Kratzer potential using the Nikiforov-Uvarov-Functional analysis method: An Application to diatomic molecules”, Canadian Journal of Physics, (2022), https://doi.org/10.1139/cjp-2022-0030

P. Nwabuzor, C. Edet, A. Ndemikot, U. Okorie, M. Ramantswana, R. Horchani, A. Abdel-Aty, and G. Rampho, “Analyzing the effects of Topological defect (TD) on the Energy Spectra and Thermal Properties of LiH, TiC and I2 Diatomic molecules”, Entropy, 23, 1060 (2021), https://doi.org/10.3390/e23081060

A.N. Ikot, W. Azogor, U.S. Okorie, F.E. Bazuaye, M.C. Onjeaj, C.A. Onate, and E.O. Chukwuocha, “Exact and Poisson Summation thermodynamic properties for diatomic molecules with shifted Tietz potential”, Indian Journal of Physics, 93, 1171 (2019), https://doi.org/10.1007/s12648-019-01375-0

E.P. Inyang, E.S. William, J.O. Obu, B.I. Ita, E.P. Inyang, and I.O. Akpan, “Energy spectra and expectation values of selected diatomic molecules through the solutions of Klein-Gordon equation with Eckart-Hellmann potential model”, Molecular Physics, 119, e1956615 (2021), https://doi.org/10.1080/00268976.2021.1956615

U.P. Obogo, O.E. Ubi, C.O. Edet, and A.N. Ikot, “Effect of the deformation parameter on the nonrelativistic energy spectra of the q-deformed Hulthen-quadratic exponential-type potential”, Ecletica Quimica Journal, 46, 73 (2021), https://doi.org/10.26850/1678-4618eqj.v46.4.2021.p60-73

C.O. Edet, and A.N. Ikot, “Superstatistics of Diatomic molecules with the shifted Deng-Fan potential model”, Biointerface Research in Applied Chemistry, 12, 4139 (2022), https://doi.org/10.33263/BRIAC123.41264139

J.Y. Liu, X-T. Hu, and C-S. Jia, “Molecular energies of the improved Rosen-Morse potential energy model”, Canadian Journal of Chemistry, 95, 40 (2014), https://doi.org/10.1139/cjc-2013-0396

C.A. Onate, and T.A. Akanbi, “Solutions of the Schrodinger equation with improved Rosen Morse potential for nitrogen molecule and sodium dimer”, Results in Physics, 22, 103961 (2021), https://doi.org/10.1016/j.rinp.2021.103961

C.A. Onate, T.A. Akanbi, and I.B. Okon, “Ro-vibrational energies of cesium dimer and lithium dimer with molecular attractive potential”, Scientic Reports, 11(1), 6198 (2021), https://doi.org/10.1038/s41598-021-85761-x

C.A. Onate, M.C. Onyeaju, E. Omugbe, I.B. Okon, and O.E. Osafile, “Bound state solutions and thermal properties of the modified Tietz-Hua potential”, Scientic Reports, 11, 2129 (2021), https://doi.org/10.1038/s41598-021-81428-9

A.N. Ikot, U.S. Okorie, R. Sever, and G.J. Rampho, “Eigensolution,expectation values and thermodynamic properties of the screened Kratzer potential”, European Physical Journal Plus, 134, 386 (2019), https://doi.org/10.1140/epjp/i2019-12783-x

A.N. Ikot, C.O. Edet, P.O. Amadi, U.S. Okorie, G.J. Rampho, and H.Y. Abdullah, “Thermodynamic properties of Aharanov-Bohm (AB) and magnetic fields with screened Kratzer potential”, European Physical Journal D, 74, 159 (2020), https://doi.org/10.1140/epjd/e2020-10084-9

A.N. Ikot, U.S. Okorie, A.T. Ngiangia, C.A. Onate, C.O. Edet, I.O. Akpan, and P.O. Amadi. “Bound state solutions of the Schrodinger equation with energy-dependent molecular Kratzer potential via asymptotic iteration method”, Ecletica Quimica Journal, 45, 65-77 (2020), https://doi.org/10.26850/1678-4618eqj.v45.1.2020.p65-77

C.O. Edet, A.N. Ikot, M.C. Onyeaju, U.S. Okorie, G.J. Rampho, M.L. Lekala, and S. Kaya, “Thermo-magnetic properties of the screened Kratzer potential with spatially varying mass under the influence of Aharanov-Bohm (AB) and position-dependent magnetic fields”, Physica E: Low-dimensional System and nanostructures, 131, 114710 (2021), https://doi.org/10.1016/j.physe.2021.114710

E.P. Inyang, E.P. Inyang, E.S. William, and E.E. Ibekwe, “Study on the applicability of Varshni potential to predict the mass-spectra of the Quark-Antiquark systems in a non-relativistic framework”, Jordan Journal of Physics, 14(4), 339-345 (2021), https://doi.org/10.47011/14.4.8

R.L. Greene, and C. Aldrich, “Variational wave functions for a screened Coulomb potential”, Physical Review A, 14, 2363 (1976), https://doi.org/10.1103/PhysRevA.14.2363

E.S. William, E.P. Inyang, I.O. Akpan, J.A. Obu, A.N. Nwachukwu, and E.P. Inyang, “Ro-vibrational energies and expectation values of selected diatomic molecules via Varshni plus modified Kratzer potential model”, Indian Journal of Physics, (2022) https://doi.org/10.1007/s12648-0222-02308-0

O. Ebomwonyi, C.A. Onate, M.C. Onyeaju, and A.N. Ikot, “Any l-states solutions of the Schrodinger equation interacting with Hellmann-generalized Morse potential model”, Karbala International Journal Modern Science, 3, 59 (2017), https://doi.org/10.1016/j.kijoms.2017.03.001

E.P. Inyang, P.C. Iwuji, J.E. Ntibi, E. Omugbe, E.A. Ibanga, and E.S. William “Quark-antiquark study with inversely quadratic Yukawa potential using Nikiforov-Uvarov-Functional analysis method”, East Eur. J. Phys. 2, 43-51 (2022), https://periodicals.karazin.ua/eejp/article/view/18535/16839

R.R. Reddy, Y.N. Ahammed, B.S. Devi, P.A. Azeem, K.R. Gopal, and T.V.R. Rao, “Potential energy curves, dissociation energies and Franck Condon factors for NI and ScI molecules”, Journal of Quantum Spectroscopy and Radiation Transfer, 74, 125 (2002), https://doi.org/10.1016/S0022-4073(01)00184-4

Published
2022-09-02
Cited
How to Cite
Inyang, E., & Obisung, E. (2022). The Study of Electronic States of Ni and ScI Molecules with Screened Kratzer Potential. East European Journal of Physics, (3), 32-38. https://doi.org/10.26565/2312-4334-2022-3-04