Entangled Coherent States in Teleportation

Keywords: Entanglement, teleportation, fidelity, coherent state


In the present paper, we will review the methods to produce superposition of entangled coherent state using polarizing beam splitter and Kerr non linearity. These coherent states have many attractive features and can be used in various schemes. Entanglement, refers to the superposition of a multiparticle system and explains a new type of correlations between any two subsystems of the quantum system, which is not existing in the classical physics. The present paper deals with the use of these states in quantum teleportation, entanglement diversion and entanglement swapping schemes. Entanglement diversion and entanglement-swapping refers to a scheme which may entangle those particles which had never interacted before. In the swapping scheme, two pairs of entangled state are taken. One particle from each pair is subjected to a Bell-state-measurement. This would result in projection of the other two outgoing particles in an entangled pair. Quantum Teleportation of two mode and three modes states is also studied with perfect fidelity. Minimum assured fidelity which is defined as the minimum of the fidelity for any unknown quantum information of the states is also discussed. It is also shown how the success rate of teleportation of a superposition of odd and even coherent states can be increased from 50% to almost 100%. The scheme suggested by van Enk and Hirota was modified by Prakash, Chandra, Prakash and Shivani in 2007. We find that an almost teleportation, diversion and swapping is possible by simply separating vacuum state from the even state. The present paper also deals with study of effect of decoherence and noise on these states and the effect of noise on fidelity and minimum assured fidelity. It is also discussed that these schemes can also be applied to the process of entanglement diversion and entanglement swapping.



Download data is not yet available.


P. Shukla, S.A. Kumar, and S. Kanwar, “Interaction of Light with matter: nonclassical phenomenon”, Physics and Chemistry of Solid State, 23(1), 5-15, 2022, https://doi.org/10.15330/pcss.23.1.5-15

E. Schrodinger, “An undulatory theory of the mechanics of atoms and molecules”, Phys. Rev. 28, 1049-1054 (1926), https://doi.org/10.1103/PhysRev.28.1049

R.J. Glauber, “The Quantum Theory of Optical Coherence”, Phys. Rev. 130, 2529-2536 (1963), https://doi.org/10.1103/PhysRev.130.2529

R.J. Glauber, “Coherent and Incoherent States of the Radiation Field”, Phys. Rev. 131, 2766-2772 (1963), https://doi.org/10.1103/PhysRev.131.2766

R.J. Glauber, In Quantum Optics and Electronics, edited by C. De Witt, A. Blandin and C. Cohen-Tanaudiji, (Gordon and Breach, New York, 1965)

V. Fock, „Verallgemeinerung und Lösung der Diracschen statistischen Gleichung“, Z. Phys. 49, 339-351 (1928), https://doi.org/10.1007/BF01337923

E.C.G. Sudarshan, “Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams”, Phys. Rev. Lett. 10, 277-286 (1963), https://doi.org/10.1103/PhysRevLett.10.277

D. Stoler, B.E.A. Saleh, and M.C. Teich, “Binomial States of the Quantized Radiation Field”, Opt. Acta, 32, 345 (1985), https://doi.org/10.1364/JOSAB.4.000185;

B. Yurke, and D. Stoler, “Generating Quantum Mechanical Supoerpositions of Macroscopically Distinguishable States via Amplitude Dispersion”, Phys. Rev. Lett. 57, 13-18 (1986), https://doi.org/10.1103/PhysRevLett.57.13

C.C. Gerry, “Generation of Schrodinger cats and entangled-coherent-states in the motion of a trapped ion by a dispersive interaction”, Phys. Rev. A, 55, 2479-2487 (1996), https://doi.org/10.1103/PhysRevA.55.2478

K. Tara, G.S. Agarwal, and S. Chaturvedi, “Production of Schrodinger macroscopic quantum superposition states in a Kerr medium”, Phys. Rev. A, 47, 5024-5031 (1993), https://doi.org/10.1103/PhysRevA.47.5024

C.C. Gerry, “Generation of optical macroscopic quantum superposition states via state reduction with a Mach-Zehnder interferometer containing a Kerr medium”, Phys. Rev. A, 59, 4095-4103 (1999), https://doi.org/10.1103/PhysRevA.59.4095

M.S. Kim, and M. Paternostro, “Generation of a coherent superposition state on demand”, https://arxiv.org/abs/quant-ph/0510057

S.A. Kumar, H. Prakash, N. Chandra, and R. Prakash, “Production of Superposition of Coherent-states Using kerr Non-Linearity”, Springer Proceedings in Physics, 256, 117-126, (2020), https://doi.org/10.1007/978-981-15-8625-5_13

Shivani. A. Kumar, “Quantum teleportation of a tripartite entangled coherent state”, Modern Physics Letters A, 36 (31), 2150217-2150227, 2021, https://doi.org/10.1142/S0217732321502175

C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W.K. Wootters, “Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels”, Phys. Rev. Lett. 70, 1895 (1993), https://doi.org/10.1103/PhysRevLett.70.1895

S.J. van Enk, and O. Hirota, “Entangled-coherent-states: Teleportation and decoherence”, Phys. Rev. A, 64, 022313 (2001), https://doi.org/10.1103/PhysRevA.64.022313

X. Wang, “Quantum teleportation of entangled-coherent-states, Phys. Rev. A”, 64, 022302 (2001), https://doi.org/10.1103/PhysRevA.64.022302

Parakh, A. “Quantum teleportation with one classical bit”, Scientific Reports, 12(1) 3392, (2022), https://doi.org/10.1038/s41598-022-06853-w

N.B. An, “Teleportation of coherent-state superpositions within a network”, Phys. Rev. A, 68, 022321-022329 (2003), https://doi.org/10.1103/PhysRevA.68.022321

H.Y. Fan, and H.L. An, “New two-mode coherent-entangled state and its application”, J. Phys. A, 37, 10993-10997 (2004), https://doi.org/10.1088/0305-4470/37/45/017

M. Swathi, and B. Rudra, “An efficient approach for quantum entanglement purification”, International Journal of Quantum Information, 20(4), 225004, (2022), https://doi.org/doi:10.1142/S0219749922500046

S. Banerjee, A. Patel, and P. Panigrahi, “Minimum distance of the boundary of the set of PPT states from the maximally mixed state using the geometry of the positive semidefinite cone”, Quantum Inf. Process 18, 296 (2019). https://doi.org/10.1007/s11128-019-2411-6

C.X. Hua, G.J. Rong, N.J. Jun, and J.J. Ping, “Entanglement diversion andquantum teleportation of entangled-coherent-states”, Chinese Physics, 15, 488 (2006), https://doi.org/10.1088/1009-1963/15/3/006

M. Zukowski, A. Zeilinger, M.A. Horne, and A.K. Ekert. “Event-Ready-Detectors” Bell Experiment via Entanglement swapping Phys. Rev. Lett. 71, 4287-4295 (1993), https://doi.org/10.1103/PhysRevLett.71.4287

J.W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental Entanglement Swapping: Entangling Photons That Never Interacted”, Phys. Rev. Lett. 80, 3891-3899 (1998), https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.80.3891

K.G. Paulson, and P.K. Panigrahi, “Tripartite non-maximally-entangled mixed states as a resource for optimally controlled quantum teleportation fidelity, Physical Review A, 100(5), 052325 (2019), https://doi.org/10.1103/PhysRevA.100.052325

A. Zeilinger, M.A. Horne, H. Weinfurter, and M. Zukowski, “Three-Particle Entanglement from Two Entangled Pairs”, Phys. Rev. Lett. 78, 3031-3038 (1997), https://doi.org/10.1103/PhysRevLett.78.3031

J. I. de Vicente, C. Spee, D. Sauerwein, and B. Kraus, “Entanglement manipulation of multipartite pure states with finite rounds of classical communication”, Phys. Rev. A 95, 012323 (2017), https://doi.org/10.1103/PhysRevA.95.012323

S. Bose, V. Vedral, and P.L. Knight, “Multiparticle generalization of entanglement swapping”, Phys. Rev. A, 57, 822-831 (1998), https://doi.org/10.1103/PhysRevA.57.822

S. Bose, V. Vedral, and P.L. Knight, “Purification via entanglement swapping and conserved entanglement”, Phys. Rev. A, 60, 194-201 (1999), https://doi.org/10.1103/PhysRevA.60.194

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Improving the teleportation of entangled-coherent-states”, Phys. Rev. A, 75, 044305-044315 (2007), https://doi.org/10.1103/PhysRevA.75.044305

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Effect of decoherence on fidelity in teleportation using entangled-coherent-states”, Journal of Physics B: Atomic, Molecular and Optical Physics, 40(8), 1613–1626 (2007), https://doi.org/10.1088/0953-4075/40/8/012

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Effect of decoherence on fidelity in teleportation of entangled-coherent-states”, International Journal of Quantum Information, 6(5), 1077–1092 (2008), https://doi.org/10.1142/S0219749908004213

H. Prakash, N. Chandra, R. Prakash, and S.A. Kumar, “Entanglement diversion between two pairs of entangled-coherent-states”, International Journal of Modern Physics B, 23(4), 585–595 (2009), https://doi.org/10.1142/S0217979209049930

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Swapping between two pairs of nonorthogonal entangled-coherent-states”, International Journal of Modern Physics B, 23(8), 2083–2092 (2009), https://doi.org/10.1142/S0217979209052042

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Almost perfect teleportation using 4-partite entangled states”, International Journal of Modern Physics B, 24(17), 3383–3394 (2010), https://doi.org/10.1142/S0217979210053367

H. Prakash, N. Chandra, R. Prakash, and S.A. Kumar, “Improving the entanglement diversion between two pairs of entangled-coherent-states”, International Journal of Modern Physics B, 24(17), 3331–3339 (2010), https://doi.org/10.1142/S0217979210053331

S.A. Kumar, in: International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optica Publishing Group, 2012), paper WPo.8, https://opg.optica.org/abstract.cfm?URI=Photonics-2012-WPo.8

S.A. Kumar, H. Prakash, N. Chandra, R. Prakash, “Noise in swapping between two pairs of non-orthogonal entangled-coherent-states”, Modern Physics Letters B, 27(3), 1350017 (2013), https://doi.org/10.1142/S0217984913500176

How to Cite
Kumar, S. A., Kanwar, S., & Shukla, P. (2022). Entangled Coherent States in Teleportation. East European Journal of Physics, (3), 39-44. https://doi.org/10.26565/2312-4334-2022-3-05