Study of Electrical Properties of Nano TiO2 Coatings Based on the Characteristic Matrix Theory and the Brus Model

  • Sarah A. Hijab Physics Department, Education College for Pure Sciences, University of Anbar, Iraq
  • Saeed N. Turki Al-Rashid Physics Department, Education College for Pure Sciences, University of Anbar, Iraq https://orcid.org/0000-0002-7622-1526
Keywords: TiO2, Nano Coatings, TheBrus model, TheCharacteristic matrix, Quantum confinement

Abstract

Electrical properties of Nano TiO2 coatings as a function of the nanoparticle size have been studied. In addition, this study explores how to calculate the quantum confinement energy of TiO2. The results confirm the effect of particle size on electrical properties especially when the size becomes close to the exciton Bohr radius. The electrical properties are not effected when the size becomes close to 40 nm. The Bohr radius of Nano TiO2 coatings has been found to be 1.4 nm. While the confinement energy was 0.43 eV. The program depends on the Characteristic Matrix Theory and The Brus Model.

Downloads

Download data is not yet available.

References

U. Woggon, Optical Properties of Semiconductor Quantum Dots, (Springer-Verlag Berlin Heidelberg, Germany, 1997).

N.N. Greenwood, and A. Earnshaw, Chemistry of the elements, (Butterworth-Heinemann, Oxford, 1997).

A.A. Al-Khafaji, Ph.D. Thesis. Photocatalysis of Sol-Gel Derived TiO2 for Anti-Dust Properties, University of Baghdad, 2013.

P. Baumeister, Optical Coating Technology, (SPIE Press, 2004).

A. Wisitsoraat, A. Tuantranont, E. Comini, G. Sberveglieri, and W. Wlodarski, “Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films, Thin Solid Films”, 517(8), 2775 (2009). https://doi.org/10.1016/j.tsf.2008.10.090

‏F. Schmidt-Stein, R. Hahn, J.F. Gnichwitz, Y.Y. Song, N.K. Shrestha, A. Hirsch, and P. Schmuki, “X-ray induced photocatalysis on TiO2 and TiO2 nanotubes: Degradation of organics and drug release”, Electrochem. Commun. 11, 2077 (2009), http://dx.doi.org/10.1016/j.elecom.2009.08.036

K. Karki, K.I. Gnanasekar, and B. Rambabu "Nanostructure Semiconductor Oxide Powders and Thin Films for Gas Sensors" Appl. Sur. Sci. 399, 193 (2006), https://www.electrochem.org/dl/ma/202/pdfs/0025.pdf

C. Burda, X. Chen, R. Narayanan, and M.A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes”, Chemical reviews, 105(4), 1025 (2005), https://doi.org/10.1021/cr030063a

L.E. Brus, “Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State”, Journal of Chemical Physics, 80(9), 4403 (1984), https://doi.org/10.1063/1.447218

Z.L. Wang, Y. Liu, and Z. Zhang, editors, Handbook of nanophase and nanostructured materials, Volume II (Kluwer Academic/Plenum Publishers, Tsinghua University Press, 2003), pp. 428.

B. Bhattacharjee, D. Ganguli, K. Iakoubovskii, A. Stesmans, and S. Chaudhuri, “Synthesis and characterization of sol-gel derived ZnS: Mn2+ nanocrystallites embedded in a silica matrix”, Indian Academy of Sciences, 25(3), 175 (2002). https://doi.org/10.1007/BF02711150

H.A. Macleod, Thin-Film Optical Filters, Fourth Edition, ISBN: 9781420073027, (CRC Press, Taylor & Francis Group, LLC, 2010), pp. 772.

N.M. Ahmed, Design and experimental studies of Multilayer Coatings for Applications in Gallium nitride Emitting Devices, Ph.D. Thesis, University Sa ins Malaysia, 2006(

S.M. Abed, and S.N.T. Al-Rashid, “Designing High reflectivity Omnidirectional coating of Mirrors for Near Infrared Spectrum (700-2500nm)”, Applied physics Research, 5(1), 102 (2013), https://doi.org/10.5539/apr.v5n1p102

A. Scaff, “Introduction to Nanotechnology (Science, Engineering & Applications)” Series of Strategic and Advanced Techniques, Arabic Compendium of Translation, INSB: 139789953824437, (2011).

G. Cao, and Y. Wang, Nanostructures and Nanomaterials: Synthesis, Properties, and Applications, ISBN: 9781783260881, (Imperial College Press, 2004), https://doi.org/10.1142/7885

T. Edvinsson, “Optical quantum confinement and photocatalytic properties in two-, one- and zero- dimensional nanostructures”, Royal Society Open Science, 5(9), 180387 (2018), https://doi.org/10.1098/rsos.180387

Z.L. Wang, Y. Liu, and Z. Zhang, editors, Handbook of nanophase and nanostructured materials, Volume II, ISBN: 9780306472497 (Kluwer Academic Plenum, 2003), pp. 406.

P. Parameshwari, B. Shashidhara, and K. Gopalakrishna, “Structural Electrical and Optical Studies on Spray Deposited Cadmium Sulphide and Copper Indium Disulphide thin films”, Arch. of Physics Research, 3, 441 (2012). https://www.researchgate.net/publication/281333311_Structural_electrical_and_optical_studies_on_spray_deposited_cadmium_sulphide_and_copper_indium_disulphide_thin_film

R. Zallen, The physics of amorphous solids, (Wiley, New York, 1983), pp. 297.

S.X. Xue, S.H. Liu, W. Zhang, J. Wang, L. Tang, B. Shen, and J.W. Zhai, “Dielectric properties and charge-discharge behaviors in niobate glass ceramics for energy-storage applications,” J. Alloys Compd. 617, 418 (2014) https://doi.org/10.1016/j.jallcom.2016.06.024

G.R. Patel, and T.C. Pandya, “Effect of size and shape on static Refractive Index, Dielectric constant and Band gap of Nano solids”, Physics and Applied Sciences, 6(1), 37-42 (2018), https://doi.org/10.26438/ijsrpas/v6i1.3742

Published
2022-06-02
Cited
How to Cite
Hijab, S. A., & Al-Rashid, S. N. T. (2022). Study of Electrical Properties of Nano TiO2 Coatings Based on the Characteristic Matrix Theory and the Brus Model. East European Journal of Physics, (2), 80-84. https://doi.org/10.26565/2312-4334-2022-2-09