Study of Structural, Elastic, Thermal and Transport Properties of Ternary X(X=Co, Rh and Ir)MnAs Obtained by DFT

  • Salim Kadri Dynamic Motors and Vibroacoustic Laboratory, M'Hamed Bougara University of Boumerdes
  • Tourab Mohamed Faculty of Technology, M’Hamed Bougara University, Cité Frantz Fanon, Boumerdes, Algeria
  • Berkani Mahièddine LSELM Laboratory, Badji Mokhtar Annaba University, Annaba, Algeria
  • Amraoui Rabie Material Physics Laboratory - L2PM, 8 May 1945 University of Guelma, Algeria
  • Bordjiba Zeyneb Material Physics Laboratory - L2PM, 8 May 1945 University of Guelma, Algeria
Keywords: Half-Heusler, DFT, elastic, thermoelectric, transport properties


The Density Functional Theory (DFT) with an approximation of generalised gradient is used for the study of elastic, thermodynamic and transport properties and for that of structural stability of ternary Half-Heuslers compounds X(X=Co, Rh and Ir)MnAs. This first predictive study of this compounds determines the mechanical properties such that the compression, shearing, Young modulla and Poisson coefficient without omitting the checking parameters of the nature of these compounds such that hardness, Zener anisotropic facto rand Cauchy pressure. The Pugh ratio and Poisson coefficient have allowed the identification of ductile nature of these compounds. The speed of sound and Debye temperature of these compounds has also been estimated from the elastic constants. The thermodynamic properties have been calculated as well for a pressure interval from zero to 25 GPa. The effect of chemical potential variation on Seebeck coefficient, electric, thermal and electronic conductivities, the power and merit factors have also been studied for different temperatures (300, 600, 900°K), so that these alloys can be better potential candidates for thermoelectric applications.


Download data is not yet available.


Enamullah, S.K. Sharma, Sameh, and S. Ahmed, J. Phys. Condens. Matter. 32, 405501 (2020).

R. De Groot, F. Mueller, P. Van Engen, and K. Buschow, New class of materials: halfmetallic ferromagnets, Phys. Rev. Lett. 50, (25) (1983) 2024.

S. Chibani, O. Arbouche, M. Zemouli, Y. Benallou, K. Amara, N. Chami, M.Ameri, and M. El Keurti, First-principles investigation of structural, mechanical, electronic, and thermoelectric properties of Half-Heusler compounds RuVX (X= As,P, and Sb), Comput. Condens. Matter, 16, e00312 (2018).

F. Benzoudji, O. Miloud Abid, T. Seddik, A. Yakoubi, R. Khenata, H. Meradji, G. Uùgur, S. Uùgur, and H.Y. Ocak, Insight into the structural, elastic, electronic, thermo- electric, thermodynamic and optical properties of MRhSb (MDTi, Zr, Hf) half Heuslers from ab initio calculations, Chinese Journal of Physics, 59, 434 (2019),

A. Amudhavalli, R. Rajeswarapalanichamy, K. Iyakutti, and A.K. Kushwaha, First principles study of structural and optoelectronic properties of Li based half Heusler alloys, Computational Condensed Matter, 14, 55 (2018),

F. Aversano, A. Ferrario, S. Boldrini, C. Fanciulli, M. Baricco, and A. Castellero, Thermoelectric Properties of TiNiSn Half Heusler Alloy Obtained by Rapid Solidification and Sintering, J. Mater. Eng. Perform. 27, 6306 (2018).

W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, and T.M. Tritt, Recent advances in nanostructured thermoelectric half-Heusler compounds, Nanomaterials, 2, 379 (2012).

J. Ma, V.I. Hegde, K. Munira, Y. Xie, S. Keshavarz, D.T. Mildebrath, C. Wolverton, A.W. Ghosh, and W. Butler, Computational investigation of half-Heusler compounds for spintronics applications, Phys. Rev. B, 95, 024411 (2017).

R. Ahmad, A. Gul, N. Mehmood, Artificial neural networks and vector regression models for prediction of lattice constants of half-Heusler compounds, Mater. Res. Express, 6, 046517 (2018).

S. Chibani, N. Chami, O. Arbouche, K. Amara, A. Kafi, Structural, elastic, electronic and transport properties of CoVX (X=Ge and Si) compounds: A DFT prediction, Computational Condensed Matter, 24, e00475 (2020).

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Knasnicka, J. Lunitz, R. Laskowski, F. Tran, and L.D. Marks, WIEN2k, An Augunented Plane Wave Plus Local Orbital Programme for calculating crystal properties, (Vienna University of Technology, Vienna, Austria, 2001).

W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965).

F.D. Murnaghan, Proc. Natl. Acad. Sci. USA, 30, 244 (1944).

P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H Madsen, and D.L. Marks, J. Chem. Phys. 152, 074101 (2020),

M. Born, K. Huang, Dynamical theory of crystal lattices (international series of monographs on physics), (Oxford University Press, Oxford, U.K., 1954).

Hill, R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Sect. A, 65, 349 (1952).

S.F. Pugh, Philos. Mag. 45, 823 (1954).

Y. Tian, B. Xu, and Z. Zhao, Int. J. Refract. Metals Hard Mater. 33, 93 (2012).

V.I. Razumovskiy, E.I. Isaev, A.V. Ruban, and P.A. Korzhavyi, Intermetallics, 16, 982 (2008).

N. Arıkan, A. İyigör, A. Candan, Ş. Uğur, Z. Charifi, H. Baaziz, and G. Uğur, Electronic and phonon properties of the full-Heusler alloys X2YAl (X=Co, Fe and Y=Cr, Sc): a density functional theory study, J. Mater. Sci. 49, 4180 (2014).

D.-y. Jung, K. Kurosaki, C.-e. Kim, H. Muta, and S. Yamanaka, Thermal expansion and melting temperature of the half-Heusler compounds: MNiSn (M = Ti, Zr, Hf), J. Alloys. Compd. 489, 328 (2010).

P. Debye, Ann. Phys. 39, 789 (1912).

A. Otero-de-la-Roza, D. Abbasi-Pérez, and V. Luaña, Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation, Comput. Phys. Commun. 182, 2232 (2011).

A.T. Petit, and P.L. Dulong, Ann. Chim. Phys. 10, 395 (1819).

E. Bringuier, L'équation de transport électronique de Boltzmann dans les solides et l'approximation du temps de relaxation, European Journal of Physics, 40, 025103 (2019).

G.K.H. Madsen, and D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities, Computer Physics Communications, 175, 67 (2006).

G. Snyder, in CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC Press, 2006), p. 144.

B. Lenoir, Thermoélectricité: des principes aux applications, (Transport, 1990). pp. 1–19.

C.H.L. Goodman, The prediction of semiconducting properties in inorganic compounds, Journal of Physics and Chemistry of Solids, 6, 305 (1958).

T. J. Seebeck, Abhand. Deut. Akad. Wiss, Berlin, (1822).

F.Z. Fouddad, S. Hiadsi, L. Bouzid, Y.F. Ghrici, and K. Bekhadda, Low temperature study of the structural stability, electronic and optical properties of the acanthite α-Ag2S: Spin-orbit coupling effects and new important ultra- refraction property, Materials Science in Semiconductor Processing, 107, 104801 (2020).

P.F. Taylor, and C. Wood, Advan. Energy Conversion, 1, 141 (1961).

A.I. Ioffe, Энергетические основы термоэлектрических батарей полупроводников [Energeticheskie osnovi termoelektricheskih battery poluprovodnikov], (Academy of Science of the USSR, Moscow, 1949).

How to Cite
Kadri, S., Mohamed, T., Mahièddine, B., Rabie, A., & Zeyneb, B. (2022). Study of Structural, Elastic, Thermal and Transport Properties of Ternary X(X=Co, Rh and Ir)MnAs Obtained by DFT. East European Journal of Physics, (1), 47-57.