Investigation of the Structural Composition of Fe-Mn-Si-Ti-Al-N-C Alloys and the Solubility of Elements in α-Iron

  • Nataliia Filonenko Dnipro State Medical University, Dnipro, Ukraine; Z. I. Nekrasov Iron and Steel Institute of National Academy of Sciences of Ukraine, Dnipro, Ukraine https://orcid.org/0000-0003-1219-348X
  • Olexander Babachenko Z. I. Nekrasov Iron and Steel Institute of National Academy of Sciences of Ukraine, Dnipro, Ukraine https://orcid.org/0000-0003-4710-0343
  • Hanna Kononenko Z. I. Nekrasov Iron and Steel Institute of National Academy of Sciences of Ukraine, Dnipro, Ukraine https://orcid.org/0000-0001-7446-4105
  • Alexander Baskevich Ukrainian State University of Chemical Technology, Dnipro, Ukraine https://orcid.org/0000-0002-3227-5637
Keywords: complex alloying of steel with aluminum, titanium and nitrogen, inclusions, oxides, nitrides, carbonitrides, ferrite, free energy of ferrite

Abstract

The study of the structural components of Fe-Mn-Si-Ti-Al-N-C with the carbon content of 0.50-0.60% (wt.), Silicon 0.80-0.90% (wt.), Manganese 0.90-0.95% ( wt. ), Aluminum - 0.20-0.30% (wt.), Titanium - 0.02-0.03% (wt.), Nitrogen - 0.015-0.02% (wt.), the rest - iron. Microstructural, micro-X-ray spectral and X-ray phase analyzes were used to determine the structural state of the alloys. It is shown that after crystallization and a number of phase transformations the structure of the alloy was presenteda - iron alloyed with cementite, oxides, nitrides and carbonitrides. Using the quasi-chemical method, the free energy dependence of the solid solution of α-iron alloyed with silicon, manganese and titanium was obtained. In α-iron, it can dissolve up to 0.016% (at.) Carbon, manganese up to 1.3% (at.), Silicon - 1.0% (at.), and titanium up to 0.5% (at.), which is consistent with experimental results.

Downloads

Download data is not yet available.

References

Y. Tu, L. Huang,, et al., Materials Science and Technology, 34(7), 780 (2018), https://doi.org/10.1080/02670836.2017.1407558

C. Zhu, et. al. Ultramicroscopy, 107(9), 808 (2007), https://doi.org/10.1016/j.ultramic.2007.02.033

G. Miyamoto, Oh J, Hono K, et al., Acta Mater. 55(15), 5027 (2007), https://doi.org/10.1016/j.actamat.2007.05.023

Y.Y. Tu, Z. G. Mao, Q. Zhang, et. al, Mater Lett. 134, 84 (2014), https://doi.org/10.1016/j.matlet.2014.07.057

І. Gutierrez-Urrutia, ISIJ International, 61(1), 16 (2021), https://doi.org/10.2355/isijinternational.ISIJINT-2020-467

N. Filonenkoa A. Babachenko, G. Kononenko, and E. Domin, East. Eur. J. Phys, 4, 90 (2020), https://doi.org/10.26565/2312-4334-2020-4-12

J. Miettinen, V.-V. Visuri, and T. Fabritius, Thermodynamic description of the Fe–Al–Mn–Si–C system for modelling solidification of steels, (University of Oulu, Oulu, 2019). pp. 704, http://jultika.oulu.fi/files/isbn9789526222516.pdf

P. Głowacz, M. Tenerowicz-Żaba, M. Sułowski, and J. Konstanty, International Journal NDTDays, II(3), (2019).

Ch. Krishna Ande, H.F. Marce, Metallurgical and Materials Transactions, A 4436, 43A (2012), https://doi.org/10.1007/s11661-012-1229-y

S.V. Tverdokhlebova, Vіsnyk Dnіpropetrovskogo nacіonalnogo unіversitetu. Serіja Fіzika. Radіoelektronіka, 14(12/1), 100 (2007).

O.V. Akymov, and S.M. Nury, Eastern-European Journal of Enterprise Technologies, 6(11/78), 35 (2015), https://doi.org/10.15587/1729-4061.2015.56370

A.P. Huliaev, and A.A. Huliaev, Металловедение [Metalscience], (Midalliance, 2011), pp. 644. (in Russian)

M.P. Shaskolskaya, Кристаллография [Crystallography], (Vyisshay Shkola, Moscow, 1984), pp.376. (in Russian)

Z.A. Matysina, and M.I. Milyan, Теория растворимости примеси в упорядоченных фазах [Solubility theory residual element in ordered phase], (DGU, Dnipro, 1991). pp.180.(in Russian).

Published
2021-12-10
Cited
How to Cite
Filonenko, N., Babachenko, O., Kononenko, H., & Baskevich, A. (2021). Investigation of the Structural Composition of Fe-Mn-Si-Ti-Al-N-C Alloys and the Solubility of Elements in α-Iron. East European Journal of Physics, (4), 120-123. https://doi.org/10.26565/2312-4334-2021-4-14