Thermodynamic and Kinetic Parameters of the Processes of Deuterium Interaction with Tungsten Protective Coatings
Abstract
The effect of radiation damage on the retention of deuterium in tungsten (W) was examined. A vacuum-arc plasma source with magnetic stabilization of the cathode spot was used for tungsten coatings preparation. W samples were treated with D ions at temperatures 300‑600 K with a fluence of (1 – 10) ·1020 D2+/m2 and ion energies of 12 keV/D2+. The influence of radiation damage on microstructure and accumulation of deuterium implanted in W samples at room temperature and after annealing have been studied. Thermal desorption (TD) spectroscopy was used to determine the D retained throughout the bulk of the sample. The structure of TD spectra represents the multi-stage process of deuterium release suggesting the trapping of gas atoms by a number of defect types. Computational evaluation of deuterium desorption within the framework of the diffusion-trapping model allows to associate characteristics of experimental TD spectra with specific trapping sites in the material. Experimental TD spectrum was fitted by assigning four binding energies of 0.55 eV, 0.74 eV, 1.09 eV and 1.60 eV for the peaks with maxima at 475, 590, 810 and 1140 K, respectively. The low temperature peak in the TD spectra is associated with desorption of deuterium bounded to the low energy natural traps, whereas the other peaks are related to the desorption of deuterium bounded to the high energy ion induced traps: monovacancies and vacancy clusters.
Downloads
References
M.A. Abdou, E.L. Vold, C.Y. Gung, M.Z. Youssef, and K. Shin, Fusion Technology, 9, 250 (1986), https://doi.org/10.13182/FST86-A24715
R.A. Pitts, X. Bonnin, F. Escourbiac, H. Frerichs, J.P. Gunn, T. Hirai, A.S. Kukushkin, E. Kaveeva, M.A. Miller, D. Moulton, V. Rozhansky, I. Senichenkov, E. Sytova, O. Schmitz, P.C. Stangeby, G.De Temmerman, I. Veselova, and S. Wiesen, Nucl. Mater. Energy, 20, 100696 (2019), https://doi.org/10.1016/j.nme.2019.100696
C. Ruset, E. Grigore, H. Maier, R. Neu, H. Greuner, M. Mayer, and G. Matthews, Fusion Eng. Des., 86(9-11), 1677 (2011), https://doi.org/10.1016/j.fusengdes.2011.04.031
A.V. Nikitin, A.S. Kuprin, G.D. Tolstolutskaya, R.L. Vasilenko, V.D. Ovcharenko, and V.N. Voyevodin, PASТ, 2(114), 29 (2018), https://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_2/article_2018_2_29.pdf
G.D. Tolstolutskaya, A.S. Kuprin, A.V. Nikitin, I.E. Kopanets, V.N. Voyevodin, I.V. Kolodiy, R.L. Vasilenko, A.V. Ilchenko PASТ, 2(126), 54 (2020), https://vant.kipt.kharkov.ua/ARTICLE/VANT_2020_2/article_2020_2_54.pdf
V.Kh. Alimov, J. Roth, Phys. Scr. 2007, 6 (2007), https://doi.org/10.1088/0031-8949/2007/T128/002
O.V. Ogorodnikova, J. Roth, and M. Mayer, J. Appl. Phys. 103, 034902 (2008), https://doi.org/10.1063/1.2828139
J. Roth, K. Schmid, Phys. Scr. 2011, 014031 (2011), https://doi.org/10.1088/0031-8949/2011/T145/014031
M. Kobayashi, M. Shimada, Y. Hatano, T. Oda, B. Merrill, Y. Oya, and K. Okuno, Fus. Eng. Des. 88, 1749 (2013), https://doi.org/10.1016/j.fusengdes.2013.04.009
A. Manhard, K. Schmid, M. Balden, and W. Jacob, J. Nucl. Mater. 415, S632 (2011), https://doi.org/10.1016/j.jnucmat.2010.10.045
A.S. Kuprin, S.A. Leonov, V.D. Ovcharenko, E.N. Reshetnyak, V.A. Belous, R.L. Vasilenko, G.N. Tolmachova, V.I. Kovalenko, and I.O. Klimenko, PAST, 5(123), 154 (2019), https://vant.kipt.kharkov.ua/ARTICLE/VANT_2019_5/article-_2019_5_154.pdf
A. Anders, Surf. Coat. Technol. 257, 308 (2014), https://doi.org/10.1016/j.surfcoat.2014.08.043
P. Wang, W. Jacob, L. Gao, S. Elgeti, and M. Balden, Phys. Scr. T159, 014046 (2014), https://doi.org/10.1088/0031-8949/2014/T159/014046
P. Wang, W. Jacob, and S. Elgeti, J. Nucl. Mater. 456, 192 (2015), http://doi.org/10.1016/j.jnucmat.2014.09.023
J. Yu, W. Han, Z. Chen, and K. Zhu, Nucl. Mater. Energy, 12, 588 (2017), http://doi.org/10.1016/j.nme.2016.10.001
J. Yan, X. Li, Z. Wang, and K. Zhu, Nucl. Mater. Energy, 22, 100733, (2020), https://doi.org/10.1016/j.nme.2020.100733
N. Gordillo, C. Gómez de Castro, E. Tejado, J.Y. Pastor, G. Balabanian, M. Panizo-Laiz, R. Gonzalez-Arrabal, J.M. Perlado, and J.del Rio, Surf. Coat. Technol. 325, 588 (2017), http://dx.doi.org/10.1016/j.surfcoat.2017.06.070
R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, and F.A. Garner, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 310, 75 (2013), http://dx.doi.org/10.1016/j.nimb.2013.05.008
I.I. Aksenov, A.A. Andreev, V.A. Belous, V.E. Strel'nitskij, and V.M. Khoroshikh, Vacuum arc: plasma sources, deposition of coatings, surface modification, (Naukova Dumka, Kyiv, 2012).
W. Eckstein, Springer Series in Materials Science, vol. 10, (Springer, Berlin, 1991), https://doi.org/10.1007/978-3-642-73513-4
P. Jung, Atomic Defects in Metals, Landolt–Bornstein New Series III/25, edited by H. Ullmaier, (Springer, Berlin, 1991)
V. Kh. Alimov, J. Roth, and M. Mayer, J. Nucl. Mater. 337-339, 619 (2005), http://dx.doi.org/10.1016/j.jnucmat.2004.10.082
O.V. Ogorodnikova, J. Roth, and M. Mayer, J. Appl. Phys. 103, 034902, (2008), https://doi.org/10.1063/1.2828139
S.O. Karpov, V.V. Ruzhits' ky, I.M. Neklyudov, V.I. Bendikov, and G.D. Tolstoluts'ka, Metallofiz. Noveishie Tekhnol. 26, 1661 (2004).
V. Kh. Alimov, K. Ertl, J. Roth, and K. Schmid, Phys. Scr. T94, 34 (2001), https://doi.org/10.1238/Physica.Topical.094a00034
T. Ahlgren, K. Heinola, K. Vörtler, and J. Keinonen, J. Nucl. Mater. 427, 152 (2012). https://doi.org/10.1016/j.jnucmat.2012.04.031
R.A. Anderl, D.F. Holland, G.R. Longhurst, R.J. Pawelko, C.L. Trybus, and C.H. Sellers, Fusion Tech. 21, 745 (1992), https://doi.org/10.13182/FST92-A29837
C. Garcia-Rosales, P. Franzen, H. Plank, J. Roth, and E. Gauthier, J. Nucl. Mater. 233-237, 803 (1996), https://doi.org/10.1016/S0022-3115(96)00185-7
P. Franzen, C. Garcia-Rosales, H. Plank, and V.Kh. Alimov, J. Nucl.Mater. 241-243, 1082, (1997). https://doi.org/10.1016/S0022-3115(97)80198-5
M. Zhao, S. Yamazaki, T. Wada, A. Koike, F. Sun, N. Ashikawa, Y. Someya, T. Mieno, and Y. Oya, Fusion Eng. Des. 160, 111853 (2020), https://doi.org/10.1016/j.fusengdes.2020.111853
R. Frauenfelder, J. Vac. Sci. Technol. 6, 388 (1969), https://doi.org/10.1116/1.1492699
G.D. Tolstolutskaya, V.V. Ruzhytskyi, V.N. Voyevodin, I.E. Kopanets, S.A. Karpov, and A.V. Nikitin, J. Nucl. Mater. 442(1-3), S710 (2013), https://doi.org/10.1016/j.jnucmat.2013.02.053
D. Terentyev, V. Dubinko, A. Bakaev, Y. Zayachuk, W.V. Renterghem, and P. Grigorev, Nucl. Fusion, 54, 042004 (2014), https://doi.org/10.1088/0029-5515/54/4/042004
H. Eleveld, and A. van Veen, J. Nucl. Mater. 191–194(Part A), 433 (1992), https://doi.org/10.1016/s0022-3115(09)80082-2
M. Poon, A.A. Haasz, and J.W. Davis, J. Nucl. Mater. 374, 390 (2008), https://doi.org/10.1016/j.jnucmat.2007.09.028
K. Heinola, T. Ahlgren, and K. Nordlund, J. Keinonen, Phys. Rev. B, 82, 094102 (2010), https://doi.org/10.1103/PhysRevB.82.094102
N. Fernandez, Y. Ferro, and D. Kato, Acta Mater. 94, 307 (2015), https://doi.org/10.1016/j.actamat.2015.04.052
K. Ohsawa, J. Goto, M. Yamakami, M. Yamaguchi, and M. Yagi, Phys. Rev. B, 82, 184117 (2010), https://doi.org/10.1103/PhysRevB.82.184117
Y.-W. You, X.-S. Kong, X.-B. Wu, Y.-C. Xu, Q.F. Fang, J.L. Chen, G.-N. Luo, C.S. Liu, B.C. Pan, and Z. Wang, AIP Adv. 3, 012118 (2013), https://doi.org/10.1063/1.4789547
M. Fukumoto, H. Kashiwagi, Y. Ohtsuka, Y. Ueda, M. Taniguchi, T. Inoue, K. Sakamoto, J. Yagyu, T. Arai, I. Takagi, and T. Kawamura, J. Nucl. Mater. 390-391, 572 (2009), https://doi.org/10.1016/j.jnucmat.2009.01.107
I.I. Arkhipov, S.L. Kanashenko, V.M. Sharapov, R.Kh. Zalavutdinov, and A.E. Gorodetsky, J. Nucl. Mater. 363-365, 1168 (2007), https://doi.org/10.1016/j.jnucmat.2007.01.150
Yu. Gasparyan, M. Rasinski, M. Mayer, A. Pisarev, and J. Roth, J. Nucl. Mater. 417, 540 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.119
A. van Veen, H.A. Filius, J. de Vries, K.R. Nijkerk, G.J. Rozing, and D. Segers, J. Nucl.Mater. 155-157, 1113 (1988), https://doi.org/10.1016/0022-3115(88)90478-3
Yu.M. Gasparyan, O.V. Ogorodnikova, V.S. Efimov, A. Mednikov, E.D. Marenkov, A.A. Pisarev, S. Markelj, and I. Čadež, J. Nucl. Mater. 463, 1013 (2015), https://doi.org/10.1016/j.jnucmat.2014.11.022
Z. Tian, J.W. Davis, and A.A. Haasz, J. Nucl. Mater. 399, 101 (2010), https://doi.org/10.1016/j.jnucmat.2010.01.007
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).