Determination of Uranium Isotopic Ratios by HRGS Using Various Efficiency Calibration Approaches

  • Dmytro V. Kutnii National Science Center “Kharkiv Institute of Physics and Technology” of NAS of Ukraine, Kharkiv, Ukraine
  • Dmytro D. Burdeynyi National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
Keywords: high resolution gamma spectrometry, uranium isotope ratios, efficiency calibration, measurement uncertainty, uranium ore, MGAU, FRAM, ISOCS


The effect of various efficiency calibration approaches on the value and source of the HRGS measurement uncertainty of 234U/238U, 235U/238U, 234U/235U isotopic ratios for the purposes of technological control, nuclear forensics, and environmental monitoring has been studied. The Canberra Broad Energy Germanium detector BEGe3830 and five samples of uranium certified reference materials CRM 969 and CRM 146 with a content of 235U/U ranging from 0.7 to 20.0 wt. % have been used. To calculate the uranium isotope ratios, the acquired gamma spectra were processed using: commercial MGAU (LLNL), FRAM (LANL), ISOCS software (Canberra/Mirion Technologies), based on intrinsic and absolute efficiency calibration approaches. It has been found that maximum relative biases, for the 234U/238U and 234U/235U isotopic ratios determined using the MGAU \ FRAM \ ISOCS software, are ~ 25 % \ ~ 10 % \ ~ 10 %, and the random uncertainty is varied within ± [18-25 % \ 2-15 % \ <=3 %], respectively. In the case of 234U/238U isotopic ratio determination using the MGAU \ FRAM \ ISOCS software, maximum relative biases come to ~ 3 % \ ~ 4 % \ ~ 1 %, and the random uncertainty values decrease to ± [1 % \ 1 % \ 1 %], respectively. In the present paper, we propose a combined intrinsic efficiency calibration approach with the use of the polynomial functions for the analytical description of the relation εrel.i(Ei). In this approach maximum relative biases, in the determination of the 234U/238U and 234U/235U isotopic ratios is 2.7 % at a random uncertainty of <= 1 %,  and in the case of the 234U/238U ratio a maximum relative deviation is 0.5 % at a random uncertainty of <= 0.7 %.


Download data is not yet available.


G. Audi, O. Bersillon, J. Blachot, and A. Wapstra, Nuclear Physics A, 729, 3 (2003),

L. Meyer, Synopsis of Ph.D. dissertation, University of Cincinnati, 2013.

D. Reading, Synopsis of Ph.D. dissertation, University of Southampton, 2016.

R. Steiger, and E. Jaeger, Earth Planet Sci. Lett. 36, 359 (1977),

F. Gauthier-Lafaye, P. Holliger, and P. Blanc, Geochimica et Cosmochimica Acta. 60, 4831 (1996),

A. Baranova, (2011), (in Russian)

Y. Fujikawa, M. Fukui, M. Sugahara, E. Ikeda, and M. Shimada, in: 10th International Congress of the Radiation Protection Association Proceedings, (JHPS, Hiroshima, 2000), pp. 1-6.

E. Yakovlev, G. Kiselev, S. Druzhinin, S. Zykov, Bulletin of the Northern (Arctic) Federal University. 3, 15 (2016). (in Russian)

S. Richter, A. Alonso, W. De Bolle, R. Wellum, and P.D.P. Taylor, International Journal of Mass Spectrometry. 193, 9 (1999),

G. Brennecka, Synopsis of Ph.D. dissertation, Arizona State University, 2011.

Y. Hinrichsen, Fingerprinting of nuclear material for nuclear forensics. (Hausarbeit am ZNF, Hamburg, 2011), pp. 9-10.

H. Wood, A. Glaser, in: INMM 49th Annual Meeting Proceedings, (INMM, Nashville, 2008), pp. 921-928.

K. Zhao, M. Penkin, C. Norman, S. Balsley, K. Mayer, P. Peerani, C. Pietri, S. Tapodi, Y. Tsutaki, M. Boella, G. Renha, E. Kuhn, International target values 2010 for measurement uncertainties in safeguarding nuclear materials. (International Atomic Energy Agency, Vienna, 2010), pp. 29-30.

D. Reilly, N. Ensslin, H. Hastings, S. Kreiner, Passive Nondestructive Assay of Nuclear Materials. (LANL, Los Alamos, 1991), pp. 193-213.

R. Harry, J. Aaldijk, J. Braak, in: IAEA Symposium on Safeguarding Nuclear Materials Proceedings, (IAEA, Vienna, 1976), pp. 235.

T.C. Nguyen, and J. Zsigrai, Nucl. Instr. and Meth. B243, 187 (2006),

L. Lakosi, J. Zsigrai, T.C. Nguyen, in: 7th Conference on Nuclear and Particle Physics Proceedings, (ENPA, Sharm El-Sheikh, 2009), pp. 413-424.

A. Berlizov, V. Tryshyn, Study of the MGAU Applicability to Accurate Isotopic Characterization of Uranium Samples. (Report # IAEA-SM-367/14/05/P, IAEA, Vienna, 2001), 13 p.

D.T. Vo, T.E. Sampson, Uranium Isotopic Analysis, the FRAM Isotopic Analysis Code, (Report # LA-13580, LANL, Los Alamos, 1999), 30 p.

I. Meleshenkovskii, N. Pauly, and P. Labeau, Eur. Phys. J. Plus. 133, 554 (2018),

A.V. Bushuev, Методы измерений ядерных материалов [Methods of nuclear materials measurement] (Moscow Engineering and Physics Institute, Moscow, Russia, 2007), pp. 65-103. (in Russian).

M. Thompson, S. Ellison, and R. Wood, Pure Appl. Chem. 78, 145 (2006),

A.A. Solodov, S.E. Smith, J.S. Bogard, Uranium Isotopic and Quantitative Analysis Using a Mechanically-Cooled HPGe Detector, (Report # ORNL/TM-2006/150, ORNL, Oak Ridge, 2006), 67 p.

T.E. Sampson, T.A. Kelley, D.T. Vo, Application Guide to Gamma-Ray Isotopic Analysis Using the FRAM Software, (LANL, Los Alamos, 2003), pp. 21-32.

J. G. Williams, in: ISRD 15 – International Symposium on Reactor Dosimetry Proceedings, (Aix-en-Provence, France, 2015), 07004.

R.C. McFarland, Reprint of “From the Counting Room”, 2(4), 35-40 (1991),

A. Svec, J. Appl. Radiat. Isot. 66, 786 (2008),

How to Cite
Kutnii , D. V., & Burdeynyi, D. D. (2021). Determination of Uranium Isotopic Ratios by HRGS Using Various Efficiency Calibration Approaches. East European Journal of Physics, (3), 151-157.