Modeling of Molecular Mechanisms of Radiation Adaptive Response Formation

Keywords: adaptive response, radiation hormesis, dose-effect relationship, low radiation doses, cancer risk

Abstract

The phenomenon of adaptive response is expressed in the increase of resistance of a biological object to high doses of mutagens under the conditions of previous exposure to these (or other) mutagens in low doses. Low doses of mutagen activate a number of protective mechanisms in a living object, which are called hormetic. Thus, the adaptive response and hormesis are links in the same chain. Radiation hormesis refers to the generally positive effect of low doses of low LET radiation on biological objects. The phenomenology of radiation-induced adaptive response and radiation hormesis for biological objects of different levels of organization is considered; the review of existing theories describing the dose-effect relationship has been reviewed. The hypothesis proposing one of the mechanisms of formation of radiation adaptive response of cells taking into account the conformational structure of chromatin has been submitted. The analysis of modern concepts of the phenomenon of hormesis on the basis of modeling of molecular mechanisms of formation of hormetic reactions to low-dose low LET radiation has been carried out. The parameters that can be used for quantitative and graphical evaluation of the phenomenon of hormesis was considered, and a formula for calculating the coefficient of radiation-induced adaptive response has been proposed. A review of mathematical models describing the radiation relative risk of gene mutations and neoplastic transformations at low-dose irradiation of cohorts has been performed. The following conclusions have been made: radiation hormesis and adaptive response are generally recognized as real and reproducible biological phenomena, which should be considered as very important phenomena of evolutionarily formed biological protection of living organisms from ionizing radiation. The hormesis model of dose-response relationship makes much more accurate predictions of a living object's response to radiation (or other stressors) in the low-dose range than the linear threshold (LNT) model does. The LNT model can adequately describe reactions only in the region of high doses of radiation, and, therefore, extrapolation modeling of biological object’s reactions from the zone of high doses to low doses is not correct.

Downloads

Download data is not yet available.

References

M. Doss, M.P. Little, and C.G. Orton, Med. Phys. 41(7), 070601 (2014), https://doi.org/10.1118/1.4881095.

L.E. Feinendegen, M. Pollycove, and R.D. Neumann, Dose-Response, 8, 227–252 (2010), https://doi.org/10.2203/dose-response.09-035.

J.A. Siegel, C.W. Pennington, and B. Sacks, J. Nucl. Med. 58, 1–6 (2017), https://doi.org/10.2967/jnumed.116.180182.

M. Pollycove, and L.E. Feinendegen, Hum. Exp. Toxicol. 22, 290–306 (2003), https://doi.org/10.1191/0960327103ht365oa.

Q. Cheng, N. Barboule, P. Frit, D. Gomez, O. Bombarde, B. Couderc, Guo-Sheng Ren, B. Salles, and P. Calsou, Nucl. Acids Res. 39(22), 9605-9619 (2011), https://doi.org/10.1093/nar/gkr656.

G.D. Zasukhina, Радиационная биология. Радиоэкология [Radiation biology. Radioecology], 1, 58-63 (1999). (in Russian)

C.Y. Kaminski, M. Dattoli, J.M. Kaminski, Dose Response 18(2), 1559325820913788 (2020). https://doi.org/10.1177/1559325820913788

I.A. Bodnarchuk, Радиационная биология. Радиоэкология [Radiation biology. Radioecology], 42(1), 36-42 (2002). (in Russian)

I.A. Bodnarchuk, Радиационная биология. Радиоэкология [Radiation biology. Radioecology], 43(1), 19-28 (2003). (in Russian)

M. Eidemuller, E. Holmberg, P. Jacob, M. Lundell, and P. Karlsson, Mutat Res. 775, 1–9 (2015), https://doi.org/10.1016/j.mrfmmm.2015.03.002.

A.N. Osipov, G. Buleeva, E. Arkhangelskaya, and D. Klokov, Mutat Res. 756, 141–145 (2013), https://doi.org/10.1016/j.mrgentox.2013.04.016.

M.S. Pearce, J.A. Salotti, M.P. Little, K. McHugh, C. Lee, K.P. Kim, N.L. Howe, C.M. Ronckers, P. Rajaraman, A.W. Craft, L. Parker, A. Berrington de González, Lancet. 380, 499–505 (2012), https://doi.org/10.1016/S0140-6736(12)60815-0.

W.H. Hsieh, I.F. Lin, J.C. Ho, and P.W. Chang, Br. J. Cancer, 117, 1883–1887 (2017), https://doi.org/10.1038/bjc.2017.350.

V.R. Bruce, S.A. Belinsky, K. Gott, and Y. Liu, Dose Response, 10, 516–526 (2012), https://scholarworks.umass.edu/dose_response/vol10/iss4/9.

D.M. Grodzinskiy, Yu.V. Shilina, O.M. Miheyev, and M.I. Gushcha, Проблеми безпеки атомних електростанцій і Чорнобиля [Problems of safety of nuclear power stations and Chornobyl], 3(2), 17-28 (2005). (in Ukrainian)

T. Ikushima, H. Aritomi H., and J. Morista, Mut. Res., 358(2), 193-198 (1996), https://doi.org/10.1016/s0027-5107(96)00120-0.

D.M. Grodzinskiy, Радіобіологія [Radiobiology], (Lybid, Kyiv, 2000), pp. 448. (in Ukrainian)

L.H. Eydus, Биофизика [Biophysics], 50(4), 693-703 (2005). (in Russian)

M.A. Kadhim, S.R. Moore, and E.H. Goodwin, Mutation Research, 568(1), 21-32 (2004), https://doi.org/10.1016/j.mrfmmm.2004.06.043.

D.M. Spitkovskiy, Радиобиология [Radiobiology], 32(3), 382-400 (1992). (in Russian)

V.F. Mikhaylov, and G.D. Zasukhina, Успехи современной биологии [Advances in modern biology], 3, 244-252 (2002). (in Russian)

S.B. Chernikov, V.Ya. Gotlib, and I.I. Pelevina, Радиационная биология. Радиоэкология [Radiation biology. Radioecology], 33(1(4)), 537-541 (1993). (in Russian)

I.I. Pelevina, A.V. Aleshchenko, M.M. Antoshchina, V.A. Biryukov, O.B. Karyakin, O.V. Ktitorova, N.G. Minayev, A.M. Serebryanyi, Радиационная биология. Радиоэкология [Radiation biology. Radioecology], 57(6), 565–572 (2017). (in Russian)

C. Tomasetti, L. Li, and B. Vogelstein, Science, 355, 1330–1334 (2017), https://doi.org/10.1126/science.aaf9011.

J.R. Moffett, Hum. Exp. Toxicol., 29(7), 539-43 (2010), https://doi.org/10.1177/0960327110369855.

L. Pruimboom, and F.A.J. Muskiet, Medical Hypotheses, 120: 28-42 (2018), https://doi.org/10.1016/j.mehy.2018.08.002.

E.J. Calabrese, D.G. Gaurav, and K. Rachna, Dose-Response, 15(2) (2017), https://journals.sagepub.com/doi/abs/10.1177/1559325817704760.

I.I. Pelevina, V.V. Petushkova, V.A. Biryukov, A.V. Akleyev, Ye.A. Neyfah, N.G. Minayeva, O.V. Ktitorov, A.V. Aleshchenko, and R.I. Pleshakova, Радиационная биология. Радиоэкология [Radiation biology. Radioecology], 59(3), 261-273 (2019).

J.A. Horas, O.R. Olguin, and M.G. Rizzotto, Phys. Med. Biol. 50, 1689-1701 (2005), https://doi.org/10.1088/0031-9155/50/8/005.

A. Joubert, K. Gamo, Z. Bencokova, J. Gastaldo, W. Rénier, N. Chavaudra, V. Favaudon, C. Arlett, and N. Foray, Int. J. Radiat. Biol., 84, 1–19 (2008), https://doi.org/10.1080/09553000701797039.

O. Garzón, M.C. Plazas, and E.J. Salazar, Tecciencia, 9(17), 15-22 (2014), http://www.scielo.org.co/pdf/tecci/v9n17/v9n17a03.pdf.

V.G. Knigavko, M.A. Bondarenko, and O.V. Zaytseva, J. of Clinical and Diagnostic Research, 12(11), XE01–XE04 (2018), https://doi.org/10.7860/JCDR/2018/36371.12236.

L.E. Feinendegen, and R.D. Neumann, Hum Exp Toxicol., 25(1), 11-7 (2006), https://doi.org/10.1191/0960327106ht579oa.

V.F. Mikhailov, and G.D. Zasukhina, Успехи современной биологии [Advances in modern biology], 3, 244-252 (2020), https://doi.org/10.31857/S0042132420030060. (in Russian)

A.V. Brenner, M.D. Tronko, M. Hatch, et al., Environ. Health Perspect., 119, 933–939 (2011), https://doi.org/10.1289/ehp.1002674.

A. Farooque, R. Mathur, A. Verma, et al. Expert Rev. Anticancer Ther. 11, 791–802 (2011), https://doi.org/10.1586/era.10.217.

R.E.J. Mitchel, Nonlinearity in Biology, Toxicology, and Medicine, 2(3), 173–183 (2004), https://doi.org/10.1080/15401420490507512.

E.J. Broome, D.L. Brown, and R.E.J. Mitchel, Radiat. Res. 158(2), 181–186 (2002), https://doi.org/10.1667/0033-7587(2002)158[0181:drfatl]2.0.co;2.

E.J. Broome, D.L. Brown, and R.E.J. Mitchel, Int. J. Radiat. Biol. 75, 681–690 (1999), https://doi.org/10.1080/095530099140014.

V.P. Bond, L.E. Feinendegen, and J. Booz, Int. J. Radiat. Biol. 53(1), 1–12 (1988), https://doi.org/10.1080/09553008814550361.

D. Bhattarcharjee, Mut. Res. 358, 231-235 (1996), https://doi.org/10.1016/s0027-5107(96)00125-x.

A.N. Mikheyev, N.I. Gushcha, Yu.Yu. Malinovskiy, and D.M. Grodzinskiy, Докл. НАН Украины [Reports of the NAS of Ukraine], 10, 177 – 174 (1998). (in Russian)

O.M. Mikheyev, M.I. Gushcha, and Yu.V. Shilina, Фізіологія рослин в Україні на межі тисячоліть [Plant physiology in Ukraine at the boundary of the millenniums], 2, 82-88 (2001). (in Ukrainian)

A.N. Mikheyev, N.I. Gushcha, and Yu.V. Shilina, Радиационная биология. Радиоэкология [Radiation biology. Radioecology], 44(3), 324-327 (2004). (in Russian)

S. Tang, J. Liang, C. Xiang, Y. Xiao, X. Wang, J. Wu, G. Li, and R.A. Cheke., J. R. Soc. Interface. 16(157) (2019), https://doi.org/10.1098/rsif.2019.0468.

E.J. Сalabrese, and L.A. Baldwin, Human Experiment. Toxicol., 19, 2-31 (2000), https://doi.org/10.1191/096032700678815585.

E.J. Сalabrese, and L.A. Baldwin, Hum. Exp. Toxicol., 19(1), 41-75 (2000), https://doi.org/10.1191/096032700678815602.

V.G. Petin, I.I. Morozov, N.M. Kabakova, and T.A. Gorshkova, Радиационная биология. Радиоэкология [Radiation biology. Radioecology], 43(2), 176-178 (2003). (in Russian)

A. M. Kuzin, Идеи радиационного гормезиса в атомном веке [Radiation hormesis ideas in the atomic age], (Nauka, Moscow, 1995), pp. 158. (in Russian)

R.M. Macklis, and B. Bresford, J. Nucl. Med. 32, 350-359 (1991).

C. Mothersill, and C. Seymour, Int J Radiat Biol. 95(7), 851-860 (2019), https://doi.org/10.1080/09553002.2019.1589016.

L.H. Eydus, and V.L. Eydus, Радиационная биология. Радиоэкология [Radiation biology. Radioecology], 41(5), 627-630 (2001). (in Russian)

E.L. Kendig, H.H. Le, and M.B. Scott., Int. J. Toxicol. 29(3), 235-246 (2010), https://doi.org/10.1177/1091581810363012.

C.Y. Kaminski, M. Dattoli, and J.M. Kaminski, Dose Response, 18(2), 1559325820913788 (2020), 10.1177/1559325820913788.

A.M. Vayserman, L.V. Mekhova, N.M. Koshel, and V.P. Voytenko, Радиационная биология. Радиоэкология [Radiation biology. Radioecology], 50(6), 691-702 (2010). (in Russian)

B. Sacks, and G. Meyerson, Health Phys. 116(6), 807-816 (2019), https://doi.org/10.1097/HP.0000000000001033.

E.J. Calabrese., and L.A. Baldwin, Hum. Exp. Toxicol. 19(1), 76-84 (2000), https://doi.org/10.1191/096032700678815611.

J.A. Siegel, C.W. Pennington, and B. Sacks, J. Nucl. Med. 58(1), 1–6 (2017), https://doi.org/10.2967/jnumed.116.180182.

A.M. Kellerer, Radiat Environ Biophys. 39(1), 17-24 (2000), https://doi.org/10.1007/pl00007679.

E.J. Calabrese, Mutat. Res. 511(3), 181-9 (2002), https://doi.org/10.1016/s1383-5742(02)00013-3.

E.J. Calabrese, Arch. Toxicol. 83(3), 227-47 (2009), https://doi.org/10.1007/s00204-009-0411-5.

M. Doss, Journal of Nuclear Medicine, 59(12), 1786-1793 (2018), https://doi.org/10.2967/jnumed.118.217182.

K. Rothkamm, and M. Lubrich, Proc. Natl. Acad. Sci. USA, 100(9), 5057-5062 (2003), https://doi.org/10.1073/pnas.0830918100.

T.P. Golivets, B.S. Kovalenko, and D.V. Volkov, Научные ведомости, Серия: Медицина. Фармация [Scientific statements, Series: Medicine. Pharmacy], 16(135(19)), 5-13 (2012). (in Russian)

L.A. Buldakova, and V.S. Kalistratova, Радиационное воздействие на организм – положительные эффекты [Radiation effects on the body - positive effects], (Inform-Atom, Moscow, 2005), pp. 246. (in Russian)

P. Maguire, C. Mothersill, B. McClean, et al., Radiat. Res. 167(4), 485-492 (2007), https://doi.org/10.1667/RR0159.1.

S.A. Geraskin, Радиационная биология. Радиоэкология [Radiation biology. Radioecology], 35(5), 563-571 (1995). (in Russian)

D.M. Spitkovskiy, Радиационная биология. Радиобиология [Radiation biology. Radioecology], 32(3), 382-400 (1992). (in Russian)

V.K. Mazurik, and V.F. Mikhaylov, Радиационная биология. Радиоэкология [Radiation biology. Radioecology], 41(3), 272-289 (2001). (in Russian)

L.N. Shmakova, O.A. Zeid, T.A. Fadeyeva, Ye.A. Krasavin, and P.V. Kutsalo, Радиационная биология. Радиоэкология [Radiation biology. Radioecology], 40(4), 405-409 (2000). (in Russian)

E.J. Calabrese, and L.A. Baldwin, Trends. Pharmacol. Sci. 22(6), 285-291 (2001), https://doi.org/1016/s0165-6147(00)01719-3.

E.J. Calabrese, Toxicol Appl. Pharmacol. 197(2), 125-136 (2004), https://doi.org/10.1016/j.taap.2004.02.007.

E.J. Calabrese, Environ. Pollut. 138(3), 379-412 (2005), https://doi.org/10.1016/j.envpol.2004.10.001.

B.R. Scott, Dose-Response 6(4), 333–351 (2007), https://doi.org/10.2203/dose-response.07-005.Scott.

B.R. Scott, Dose-Response 5(2), 131-141 (2007), https://doi.org/10.2203/dose-response.05-037.Scott.

Y. Yao, and W. Dai, J. Carcinog. Mutagen. 5, 1000165 (2014), https://doi.org/10.4172/2157-2518.1000165.

B.R. Scott BR, and J. Di Palma, Dose-Response 5(3), 230–255 (2007), https://doi.org/10.2203/dose-response.06-002.Scott.

K. Rothkamm, and M. Löbrich, Proc. Nat. Acad. Sci. USA 100(9), 5057-5062 (2003), https://doi.org/10.1073/pnas.0830918100.

B.L. Cohen, Health Phys. 68(2), 157-174 (1995), https://doi.org/10.1097/00004032-199502000-00002.

L. Shu-Zheng, Dose Response 5(1), 39-47 (2007), https://doi.org/10.2203/dose-response.06-108.Liu.

A.M. Vaiserman, Dose Response 8(2), 172–191 (2010), https://doi.org/10.2203/dose-response.09-037.Vaiserman.

M. Tubiana, A. Aurengo, D. Averbeck, and R. Masse, Radiat. Environ. Biophys. 44(4), 245-251 (2006). http://refhub.elsevier.com/S0009-2797(18)31101-3/sref2

A. Vaiserman, A. Koliada, O. Zabuga, and Y. Socol, Dose Response 16(3), 1559325818796331 (2018), https://doi.org/10.1177/1559325818796331.

A. Vaiserman, J.M. Cuttler, and Y. Socol, Biogerontology, 22, 145–164 (2021), https://doi.org/10.1007/s10522-020-09908-5.

V. Calabrese, C. Cornelius, A.T. Dinkova–Kostova, E.J. Calabrese, and M.P. Mattson, Antioxid Redox Signal. 13(11), 1763–1811 (2010), https://doi.org/10.1089/ars.2009.3074.

Y. Shibamoto, and H. Nakamura, Int. J. Mol. Sci. 19(8), 2387 (2018), https://doi.org/10.3390/ijms19082387.

L.E. Feinendegen, Br. J. Radiol. 78(925), 3-7 (2005), https://doi.org/10.1259/bjr/63353075.

L.E. Feinendegen, M. Pollycove, and R.D. Neumann, Exp. Hematol. 35(4S1), 37–46 (2007), https://doi.org/10.1016/j.exphem.2007.01.011.

B.R. Scott BR, and S. Tharmalingam, Chem. Biol. Interact. 301, 34–53 (2019), https://doi.org/10.1016/j.cbi.2019.01.013.

B.M. Kim, Y. Hong, and S. Lee, Int. J. Mol. Sci. 16(11), 6880–26913 (2015), https://doi.org/10.3390/ijms161125991.

A.M. Vaiserman, Rejuvenation Res. 11(1), 9–42 (2008), https://doi.org/10.1089/rej.2007.0579.

S. Jin, H. Jiang, and L. Cai, Radiation Medicine and Protection 1(1), 2-6 (2020). https://doi.org/10.1016/j.radmp.2020.01.004.

Published
2021-04-30
Cited
How to Cite
Bondarenko, M. A., Zaytseva, O. V., & TrusovaV. М. (2021). Modeling of Molecular Mechanisms of Radiation Adaptive Response Formation. East European Journal of Physics, (2), 177-188. https://doi.org/10.26565/2312-4334-2021-2-16