Mode-Converting Corrugations for Cavities of Second-Harmonic Gyrotrons with Improved Performance

  • Tetiana Tkachova National Science Center "Kharkiv Institute of Physics and Technology" https://orcid.org/0000-0002-4605-3429
  • Vitalii Shcherbinin National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine https://orcid.org/0000-0002-9879-208X
  • Viktor Tkachenko V.N. Karazin Kharkiv National University, Kharkiv, Ukraine; National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine https://orcid.org/0000-0002-1108-5842
Keywords: gyrotron, cyclotron harmonic, cavity, mode-converting corrugations, starting current, output power

Abstract

A new method of improving mode selection in cavities of sub-terahertz second-harmonic gyrotrons is investigated. As an example, a second-harmonic gyrotron with frequency of 0.3 THz is considered. The gyrotron is designed for collective Thomson scattering (CTS) diagnostics of fusion plasmas and has a limited output power due to competition between the operating TE13,2 mode and first-harmonic modes. For suppression of the first-harmonic competing modes periodic longitudinal corrugations are used in the gyrotron cavity. Such corrugations can induce coupling of the normal cavity modes known as azimuthal Bloch harmonics. The corrugation depth is set close to the half- and quarter-wavelength of the operating second-harmonic mode and competing first-harmonic modes, respectively. Under this condition, longitudinal corrugations of the cavity generally have only a slight effect on the operating mode, but can initiate strong conversion of the competing modes to high-order Bloch harmonics. The full-wave method of coupled azimuthal harmonics is applied to investigate the influence of dimensions of the corrugated gyrotron cavity on eigenvalues, ohmic losses and beam-wave coupling coefficients for the operating TE13,2 mode and the most dangerous competing modes. Using the self-consistent theory of beam interaction with the operating and competing modes, the most optimal parameters are found for a gyrotron cavity with mode-converting corrugations, which ensure the widest range of a single mode operation for the 0.3-THz second-harmonic gyrotron. It is shown that, in this range, the gyrotron output power can be increased from 100 kW to 180 kW, as required by CTS plasma diagnostics. It is found that output mode purity of the 0.3-THz second-harmonic gyrotron falls off due to mode-converting corrugations, which induce undesirable coupling of the operating TE13,2 mode with neighboring Bloch harmonics in the output section of the gyrotron cavity.

Downloads

Download data is not yet available.

References

R.J. Temkin, Int. J. Terahertz Sci. Technol. 7(1), 1-9 (2014), https://doi.org/10.11906/TST.001-009.2014.03.01.

M.Y. Glyavin, T. Idehara, and S.P. Sabchevski, IEEE Trans. Terahertz Sci. Technol. 5(5), 788-797 (2015), https://doi.org/10.1109/TTHZ.2015.2442836.

M. Blank, P. Borchard, S. Cauffman, K. Felch, M. Rosay, and L. Tometich, Int. J. Terahertz Sci. Technol. 7(4), 177-186 (2016), https://doi.org/10.11906/TST.177-186.2016.12.17.

M. Thumm, J. Infrared Millim. Terahertz Waves 41(1), 1-140 (2020), https://doi.org/10.1007/s10762-019-00631-y.

T. Notake, T. Saito, Y. Tatematsu, A. Fujii, S. Ogasawara, L. Agusu, I. Ogawa, T. Idehara, and V.N. Manuilov, Phys. Rev. Lett. 103(22), 225002 (2009), https://doi.org/10.1103/PhysRevLett.103.225002.

T. Saito, N. Yamada, S. Ikeuti, S. Ogasawara, Y. Tatematsu, R. Ikeda, I. Ogawa, T. Idehara, V.N. Manuilov, T. Shimozuma, S. Kubo, M. Nishiura, K. Tanaka, and K. Kawahata, Phys. Plasmas 19(6), 063106 (2012), https://doi.org/10.1063/1.4729316.

T. Saito, S. Tanaka, R. Shinbayashi, Y. Tatematsu, Y. Yamaguchi, M. Fukunari, S. Kubo, T. Shimozuma, K. Tanaka, and M. Nishiura, Plasma Fusion Res. 14, 1406104 (2019), https://doi.org/10.1585/pfr.14.1406104.

K.A. Avramides, C.T. Iatrou, and J.L. Vomvoridis, IEEE Trans. Plasma Sci. 32(3), 917-928 (2004), https://doi.org/10.1109/TPS.2004.828781.

K.A. Avramides, J.L. Vomvoridis, and C.T. Iatrou, in: AIP Conference Proceedings 807, 264-270 (2006), https://doi.org/10.1063/1.2158787.

V.I. Shcherbinin, V.I. Tkachenko, K.A. Avramidis, and J. Jelonnek, IEEE Trans. Electron Devices 66(12), 5313-5320 (2019), https://doi.org/10.1109/TED.2019.2944647.

V.I. Shcherbinin, Y.K. Moskvitina, K.A. Avramidis and J. Jelonnek, IEEE Trans. Electron Devices 67(7), 2933-2939 (2020), https://doi.org/10.1109/TED.2020.2996179.

V.I. Shcherbinin, K.A. Avramidis, M. Thumm and J. Jelonnek, J. Infrared Millim. Terahertz Waves 42(1), 93-105 (2021), https://doi.org/10.1007/s10762-020-00760-9.

T.I. Tkachova, V.I. Shcherbinin, and V.I. Tkachenko, J. Infrared Millim. Terahertz Waves 40(10), 1021-1034 (2019), https://doi.org/10.1007/s10762-019-00623-y.

T.I. Tkachova, V.I. Shcherbinin, V.I. Tkachenko, Z.C. Ioannidis, M. Thumm, and J. Jelonnek, J. Infrared Millim. Terahertz Waves 42(3), 260-274 (2021), https://doi.org/10.1007/s10762-021-00772-z.

J.B. Davies, Proc. IEE-Part C 109(15), 162-171 (1962), https://doi.org/10.1049/pi-c.1962.0022.

T. Scharten, J. Nellen, and F. van den Bogaart, Proc. IEE-Part H 128(3), 117-123 (1981), https://doi.org/10.1049/ip-h-1.1981.0019.

C.T. Iatrou, S. Kern, and A.B. Pavelyev, IEEE Trans. Microw. Theory Techn. 44(1), 56-64 (1996), https://doi.org/10.1109/22.481385.

V.I. Shcherbinin, and V.I. Tkachenko, J. Infrared Millim. Terahertz Waves 38(7), 838-852 (2017), https://doi.org/10.1007/s10762-017-0386-x.

V.I. Shcherbinin, B.A. Kochetov, A.V. Hlushchenko, and V.I. Tkachenko, IEEE Trans. Microw. Theory Techn. 67(2), 577-583 (2019), https://doi.org/10.1109/TMTT.2018.2882493.

T.I. Tkachova, V.I. Shcherbinin, and V.I. Tkachenko, in: Proc. Int. Conf. Math. Methods Electromagn. Theory (MMET’2018) (Kyiv, Ukraine, 2018), pp. 238-241, https://doi.org/10.1109/MMET.2018.8460433.

T.I. Tkachova, V.I. Shcherbinin, and V.I. Tkachenko, Problems Atomic Sci. Technol. 6(118), 67-70 (2018), http://dspace.nbuv.gov.ua/handle/123456789/148829.

T.I. Tkachova, V.I. Shcherbinin, and V.I. Tkachenko, Problems Atomic Sci. Technol. 4(122), 31-34 (2019).

V.I. Shcherbinin, A.V. Hlushchenko, A.V. Maksimenko, and V.I. Tkachenko, IEEE Trans. Electron Devices 64(9), 3898-3903 (2017), https://doi.org/10.1109/TED.2017.2730252.

Published
2021-04-10
Cited
How to Cite
Tkachova, T., Shcherbinin, V., & Tkachenko, V. (2021). Mode-Converting Corrugations for Cavities of Second-Harmonic Gyrotrons with Improved Performance. East European Journal of Physics, (2), 89-97. https://doi.org/10.26565/2312-4334-2021-2-05