Mode-Converting Corrugations for Cavities of Second-Harmonic Gyrotrons with Improved Performance

  • Tetiana Tkachova National Science Center "Kharkiv Institute of Physics and Technology" https://orcid.org/0000-0002-4605-3429
  • Vitalii Shcherbinin National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine https://orcid.org/0000-0002-9879-208X
  • Viktor Tkachenko V.N. Karazin Kharkiv National University, Kharkiv, Ukraine; National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine https://orcid.org/0000-0002-1108-5842
Keywords: gyrotron, cyclotron harmonic, cavity, mode-converting corrugations, starting current, output power

Abstract

Mode-converting longitudinal corrugations are used as a means of improving the selectivity properties of cavities for second-harmonic gyrotrons. As an example, 100-kW 0.3-THz second-harmonic gyrotron is considered. For the operating second-harmonic mode and most dangerous first-harmonic competing modes, the eigenvalues, ohmic losses and beam-wave coupling coefficients are investigated with respect to dimensions of a corrugated cavity. The most optimal parameters are found for a gyrotron cavity with mode-converting corrugations, which ensure the widest range of a single mode operation for the 0.3-THz second-harmonic gyrotron. It is shown that, in this range, the gyrotron output power can be increased up to 180 kW. It is found that output mode purity of the 0.3-THz second-harmonic gyrotron falls off due to mode-converting corrugations, which induce undesirable coupling of the operating mode with neighboring Bloch harmonics in the output section of the gyrotron cavity.

Downloads

Download data is not yet available.

References

R.J. Temkin, Int. J. Terahertz Sci. Technol. 7(1), 1-9 (2014), https://doi.org/10.11906/TST.001-009.2014.03.01.

M.Y. Glyavin, T. Idehara, and S.P. Sabchevski, IEEE Trans. Terahertz Sci. Technol. 5(5), 788-797 (2015), https://doi.org/10.1109/TTHZ.2015.2442836.

M. Blank, P. Borchard, S. Cauffman, K. Felch, M. Rosay, and L. Tometich, Int. J. Terahertz Sci. Technol. 7(4), 177-186 (2016), https://doi.org/10.11906/TST.177-186.2016.12.17.

M. Thumm, J. Infrared Millim. Terahertz Waves 41(1), 1-140 (2020), https://doi.org/10.1007/s10762-019-00631-y.

T. Notake, T. Saito, Y. Tatematsu, A. Fujii, S. Ogasawara, L. Agusu, I. Ogawa, T. Idehara, and V.N. Manuilov, Phys. Rev. Lett. 103(22), 225002 (2009), https://doi.org/10.1103/PhysRevLett.103.225002.

T. Saito, N. Yamada, S. Ikeuti, S. Ogasawara, Y. Tatematsu, R. Ikeda, I. Ogawa, T. Idehara, V.N. Manuilov, T. Shimozuma, S. Kubo, M. Nishiura, K. Tanaka, and K. Kawahata, Phys. Plasmas 19(6), 063106 (2012), https://doi.org/10.1063/1.4729316.

T. Saito, S. Tanaka, R. Shinbayashi, Y. Tatematsu, Y. Yamaguchi, M. Fukunari, S. Kubo, T. Shimozuma, K. Tanaka, and M. Nishiura, Plasma Fusion Res. 14, 1406104 (2019), https://doi.org/10.1585/pfr.14.1406104.

K.A. Avramides, C.T. Iatrou, and J.L. Vomvoridis, IEEE Trans. Plasma Sci. 32(3), 917-928 (2004), https://doi.org/10.1109/TPS.2004.828781.

K.A. Avramides, J.L. Vomvoridis, and C.T. Iatrou, in: AIP Conference Proceedings 807, 264-270 (2006), https://doi.org/10.1063/1.2158787.

V.I. Shcherbinin, V.I. Tkachenko, K.A. Avramidis, and J. Jelonnek, IEEE Trans. Electron Devices 66(12), 5313-5320 (2019), https://doi.org/10.1109/TED.2019.2944647.

V.I. Shcherbinin, Y.K. Moskvitina, K.A. Avramidis and J. Jelonnek, IEEE Trans. Electron Devices 67(7), 2933-2939 (2020), https://doi.org/10.1109/TED.2020.2996179.

V.I. Shcherbinin, K.A. Avramidis, M. Thumm and J. Jelonnek, J. Infrared Millim. Terahertz Waves 42(1), 93-105 (2021), https://doi.org/10.1007/s10762-020-00760-9.

T.I. Tkachova, V.I. Shcherbinin, and V.I. Tkachenko, J. Infrared Millim. Terahertz Waves 40(10), 1021-1034 (2019), https://doi.org/10.1007/s10762-019-00623-y.

T.I. Tkachova, V.I. Shcherbinin, V.I. Tkachenko, Z.C. Ioannidis, M. Thumm, and J. Jelonnek, J. Infrared Millim. Terahertz Waves 42(3), 260-274 (2021), https://doi.org/10.1007/s10762-021-00772-z.

J.B. Davies, Proc. IEE-Part C 109(15), 162-171 (1962), https://doi.org/10.1049/pi-c.1962.0022.

T. Scharten, J. Nellen, and F. van den Bogaart, Proc. IEE-Part H 128(3), 117-123 (1981), https://doi.org/10.1049/ip-h-1.1981.0019.

C.T. Iatrou, S. Kern, and A.B. Pavelyev, IEEE Trans. Microw. Theory Techn. 44(1), 56-64 (1996), https://doi.org/10.1109/22.481385.

V.I. Shcherbinin, and V.I. Tkachenko, J. Infrared Millim. Terahertz Waves 38(7), 838-852 (2017), https://doi.org/10.1007/s10762-017-0386-x.

V.I. Shcherbinin, B.A. Kochetov, A.V. Hlushchenko, and V.I. Tkachenko, IEEE Trans. Microw. Theory Techn. 67(2), 577-583 (2019), https://doi.org/10.1109/TMTT.2018.2882493.

T.I. Tkachova, V.I. Shcherbinin, and V.I. Tkachenko, in: Proc. Int. Conf. Math. Methods Electromagn. Theory (MMET’2018) (Kyiv, Ukraine, 2018), pp. 238-241, https://doi.org/10.1109/MMET.2018.8460433.

T.I. Tkachova, V.I. Shcherbinin, and V.I. Tkachenko, Problems Atomic Sci. Technol. 6(118), 67-70 (2018), http://dspace.nbuv.gov.ua/handle/123456789/148829.

T.I. Tkachova, V.I. Shcherbinin, and V.I. Tkachenko, Problems Atomic Sci. Technol. 4(122), 31-34 (2019).

V.I. Shcherbinin, A.V. Hlushchenko, A.V. Maksimenko, and V.I. Tkachenko, IEEE Trans. Electron Devices 64(9), 3898-3903 (2017), https://doi.org/10.1109/TED.2017.2730252.

Published
2021-04-10
Cited
0 article
How to Cite
Tkachova, T., Shcherbinin, V., & Tkachenko, V. (2021). Mode-Converting Corrugations for Cavities of Second-Harmonic Gyrotrons with Improved Performance. East European Journal of Physics, (2), 89-97. https://doi.org/10.26565/2312-4334-2021-2-05