Angular Dependence of Ionoluminescence for Silica Case
Abstract
The paper deals with angular dependence of ionoluminescence from transparent glossy silica samples. We measured silica ionoluminescence spectra at wavelength range of 400–700 nm for different projectiles (H1+, H2+, He+ 210 and 420 keV) and registered two most common intensive emission peaks (blue with a maximum at 456 nm and red one at 645 nm). To study luminescent angular dependence, the behavior of the blue peak maximum as a function of observation angle in the range of 0–70° was examined, namely, the indicatrix at the wavelength of 456 nm was found. The intensity corresponding to ionoluminescent indicatrices were found to be higher with respect to values from Lambertian angular distribution reaching approximately 20 % at large observation angles. We also calculated angular distribution of light above the sample surface taking into account refraction and reflection at the solid-ambient interface. The results obtained were in a good agreement with silica ionoluminescence experimental data for the average indicatrix curve. The latter indicates that the model assumption (luminescent light generated by fast ions within silica is unpolarized and isotropic) is correct. It was demonstrated that geometry of the experiment is very important, i.e., considering the light collected by the measuring system in a certain solid angle, one has to take into account that mutual arrangement of the sample and detector can distort angular distribution. The refraction at the border between a sample and vacuum (or air) strongly influences the luminescent light angular distribution.
Downloads
References
P.D. Townsend, B. Yang, and Y. Wang, Revista Mexicana De Fisica S, 54(2), 29-38 (2008), http://www.scielo.org.mx/pdf/rmf/v54s2/v54s2a5.pdf.
O. Pen˜a-Rodrı´guez, D. Jime´nez-Rey, J. Manzano-Santamarı´a, J. Olivares, A. Muñoz, A. Rivera, and F. Agulló-López, Appl. Phys. Express 5(1), 011101 (2012), https://doi.org/10.1143/APEX.5.011101.
P.D. Townsend, M. Khanlary, and D.E. Hole, Surf. & Coat. Tech. 201, 8160 (2007), https://doi.org/10.1016/j.surfcoat.2006.01.075.
P.D. Townsend, and Y. Wang, Energy Proc. 41, 64 (2013), https://doi.org/10.1016/j.egypro.2013.09.008.
M.L. Crespillo, J.T. Graham, Y. Zhang, and W.J. Weber, J. Lumin. 172, 208 (2016), https://doi.org/10.1016/j.jlumin.2015.12.016.
D. Jimenez-Rey, O. Peña-Rodríguez, J. Manzano-Santamaría, J.Olivares, A.Muñoz-Martin, A.Rivera, and F.Agulló-López, Nucl. Instr. and Meth. Phys. Res. B, 286, 282 (2012), https://doi.org/10.1016/j.nimb.2011.12.025.
R. Skiba, І. Mysiura, O. Kalantaryan, V. Zhurenko, and S. Kononenko, East Eur. J. Phys. 4, 93 (2018), https://doi.org/10.26565/2312-4334-2018-4-11.
P.D. Townsend, Nucl. Instr. and Meth. Phys. Res. B, 286, 35 (2012), https://doi.org/10.1016/j.nimb.2011.10.070.
A. Finch, J. Garcia-Guinea, D. Hole, P.D. Townsend, and J.M. Hanchar, J. Phys. D: Appl. Phys. 37, 2795 (2004), https://doi.org/10.1088/0022-3727/37/20/004.
H. Calvo del Castillo, N. Deprez, T. Dupuis, F. Mathis, A. Deneckere, P. Vandenabeele, T. Calderón, and D. Strivay, Anal. Bioanal. Chem. 394, 1043 (2009), https://doi.org/10.1007/s00216-009-2679-y.
G. Valotto, A. Quaranta, E. Cattaruzza, F. Gonella, and G. Rampazzo, Spectrochem. Acta Part A: Mol. Biomol. Spectrosc. 95, 533 (2012), https://doi.org/10.1016/j.saa.2012.04.045.
R. De Witt, D.M.Klein, E.G. Yukihara, S.L. Simon, and S.W.S. McKeever, Health Phys. 98(2), 432 (2010), https://doi.org/10.1097/01.HP.0000347997.57654.17.
P.D. Townsend, and M.L. Crespillo, Phys. Proc. 66, 345 (2015), https://doi.org/10.1016/j.phpro.2015.05.043.
Y. Wang, and P.D. Townsend, J. Lumin. 142, 202 (2013), https://doi.org/10.1016/j.jlumin.2013.03.052.
N.C. Greenham, R.H. Friend, D.D.C. and Bradley, Adv. Mater. 6(6), 491 (1994), https://doi.org/10.1002/adma.19940060612.
F.A. Ponce, D.P. Bour, W. Götz, and P.J. Wright, Appl. Phys. Lett. 68, 57 (1996), https://doi.org/10.1063/1.116756.
D.C. Marra, E.S. Aydil, S.-J. Joo, E. Yoon, and V.I. Srdanov, Appl. Phys. Lett. 77(21), 3346 (2000), https://doi.org/10.1063/1.1326837.
A. N. Gruzintsev, Inorg. Mat. 51(11), 1127 (2015) https://doi.org/10.1134/S0020168515110023.
G.M. Haak, N.L. Christensen, and B.E. Hammer, Nucl. Instr. and Meth. Phys. Res. A, 390, 191 (1997), https://doi.org/10.1016/S0168-9002(97)00355-0.
I. Kandarakis, D. Cavouras, D. Nikolopoulos, A. Episkopakis, N. Kalivas, P. Liaparinos, I. Valais, G. Kagadis, K. Kourkoutas, I. Sianoudis, N. Dimitropoulos, C. Nomicos, and G. Panayiotakisc, App. Rad. Isot. 64, 508 (2006), https://doi.org/10.1016/j.apradiso.2005.11.016.
S. Kononenko, O. Kalantaryan, V. Muratov, and V. Zhurenko, Radiation Measurements, 42, 751 (2007), https://doi.org/10.1016/j.radmeas.2007.02.061.
P.J. Chandler, F. Jaque, and P.D. Townsend, Rad. Eff. 42(1-2), 45 (1979), https://doi.org/10.1080/10420157908201735.
R. Salh, in: Crystalline Silicon - Properties and Uses (InTech, 2011), pp. 135–172, http://dx.doi.org/10.5772/22607.
V. Zhurenko, O. Kalantaryan, S. Kononenko, I. Mysiura, and E. Barannik, Nucl. Instr. Meth. Phys. Res. B, 407, 5 (2017), https://doi.org/10.1016/j.nimb.2017.05.038.
A.N. Matveev, Optics (Mir, Moscow, 2000).
E.F. Zalewski, in: Handbook of Optics, edited by M. Bass (Mc Graw-Hill, New York, 1995).
O. Kalantaryan, S. Kononenko, and V. Zhurenko, Func. Mat. 20(4), 462 (2013), http://dx.doi.org/10.15407/fm20.04.462.
J.F. Ziegler, M.D. Ziegler, and J.P. Biersack, Nucl. Instr. Meth. Phys. Res. B, 268(11-12), 1818 (2010), https://doi.org/10.1016/j.nimb.2010.02.091.
M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 2002).
I.H. Malitson, J. Opt. Soc. Am. 55(10), 1205 (1965), https://doi.org/10.1364/JOSA.55.001205.
Copyright (c) 2020 Sergiy Kononenko, Illia Mysiura, Vitaliy Zhurenko, Oleg Shyshkin, Oganes Kalantaryan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).