Structure and Properties of ZnSnP2 With the Application in Photovoltaic Devices by Using CdS and ZnTe Buffer Layers
Abstract
Ab initio calculations have been performed by the linearized augmented plane wave (LAPW) method as implemented in the WIEN2K code within the density functional theory to obtain the structural, electronic and optical properties of ZnSnP2 in the body centered tetragonal (BCT) phase. The six elastic constants (C11, C12, C13, C33, C44 and C66) and mechanical parameters have been presented and compared with the available experimental data. The thermodynamic calculations within the quasi-harmonic approximation is used to give an accurate description of the pressure-temperature dependence of the thermal-expansion coefficient, bulk modulus, specific heat, Debye temperature, entropy Grüneisen parameters. Based on the semi-empirical relation, we have determined the hardness of the material; which attributed to different covalent bonding strengths. Further, ZnSnP2 solar cell devices have been modeled; device physics and performance parameters have analyzed for ZnTe and CdS buffer layers. Simulation results for ZnSnP2 thin layer solar cell show the maximum efficiency (22.9%) with ZnTe as the buffer layer. Most of the investigated parameters are reported for the first time.
Downloads
References
S. Mukherjee, T. Maitra, A. Nayak, A. Pradhan, M. K. Mukhopadhyay, B. Satpati, and S. Bhunia, Materials Chemistry and Physics 204, 147-153 (2018), https://doi.org/10.1016/j.matchemphys.2017.10.014.
S. Sharma, and A.S. Verma, Eur. Phys. J. B, 87, 159 (2014), https://doi.org/10.1140/epjb/e2014-41097-2.
S. Sahin, Y.O. Ciftci, K. Colakoglu and N. Korozlu, J. Alloy. Comp. 529, 1-7 (2012), https://doi.org/10.1016/j.jallcom.2012.03.046.
A.D. Martinez, E.L. Warren, P. Gorai, K.A. Borup, D. Kuciauskas, P.C. Dippo, and S.W. Boettcher, Energy & Environmental Science, 9, 1031-1041 (2016), https://doi.org/10.1039/C5EE02884A.
A.D. Martinez, A.N. Fioretti, E.S. Toberer, and A.C. Tamboli, J. Materials Chemistry A, 5, 11418-11435 (2017), https://doi.org/10.1039/C7TA00406K.
K. Miyauchi, T. Minemura, K. Nakatani, H. Nakanishi, M. Sugiyama, and S. Shirakata, Phys. Stat. Sol. C, 6, 1116 (2009), https://doi.org/10.1002/pssc.200881170.
S. Nakatsuka, S. Akari, J. Chantana, T. Minemoto, and Y. Nose, ACS Applied Materials & Interfaces, 9, 33827-33832 (2017), https://doi.org/10.1021/acsami.7b08852.
S. Nakatsuka, N. Yuzawa, J. Chantana, T. Minemoto, and Y. Nose, Physica Status Solidi A, 214, 1600650 (2017), https://doi.org/10.1002/pssa.201600650.
D.O. Scanlon, and A. Walsh, Appl. Phys. Letts. 100, 251911 (2012), https://doi.org/10.1063/1.4730375.
P.C. Sreeparvathy, V. Kanchana, and G. Vaitheeswaran, J. Appl. Phys, 119, 085701 (2016), https://doi.org/10.1063/1.4942011.
A.S. Verma, Mat. Chem. Phys. 139, 256 (2013), https://doi.org/10.1016/j.matchemphys.2013.01.032.
N. Yuzawa, J. Chantana, S. Nakatsuka, Y. Nose, and T. Minemoto, Curr. Appl. Phys. 17, 557-564 (2017), https://doi.org/10.1016/j.cap.2017.02.005.
Y. Zhang, Comp. Mat. Sci. 133, 152-158 (2017), https://doi.org/10.1016/j.commatsci.2017.03.016.
G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, and L. Nordström, Phys. Rev. B, 64, 195134 (2001), https://doi.org/10.1103/PhysRevB.64.195134.
K. Schwarz, P. Blaha, and G.K.H Madsen, Comput. Phys. Commun. 147, 71 (2002), https://doi.org/10.1016/S0010-4655(02)00206-0.
P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, in: WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, edited by K. Schwarz (Techn. Universität Wien, Austria, 2001).
Z. Wu, and R.E. Cohen, Phys. Rev. B, 73, 235116 (2006), https://doi.org/10.1103/PhysRevB.73.235116.
F. Tran, R. Laskowski, P. Blaha, and K. Schwarz, Phys. Rev. B, 75, 115131 (2007), https://doi.org/10.1103/PhysRevB.75.115131.
W. Kohn, and L.J. Sham, Phys. Rev. 140, A1133 (1965), https://doi.org/10.1103/PhysRev.140.A1133.
J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996), https://doi.org/10.1103/PhysRevLett.77.3865.
F. Tran and P. Blaha, Phys. Rev. Letts. 102, 226401 (2009), https://doi.org/10.1103/PhysRevLett.102.226401.
P.E. Blochl, O. Jepsen, and O.K. Andersen, Phys. Rev. B, 49, 16223 (1994), https://doi.org/10.1103/PhysRevB.49.16223.
F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244-247 (1947), https://doi.org/10.1073/pnas.30.9.244.
V.L. Shaposhnikov, A.V. Krivosheeva, V.E. Borisenko, J.L. Lazzari, and F.A. Avitaya, Phys. Rev. B, 85, 205201 (2012), https://doi.org/10.1103/PhysRevB.85.205201.
J. Sun, H.T. Wang, N.B. Ming, J. He, and Y. Tian, Appl. Phys. Letts. 84, 4544 (2004), https://doi.org/10.1063/1.1758781.
S. Saha, and T.P. Sinha, Phys. Rev. B, 62, 8828 (2000), https://doi.org/10.1103/PhysRevB.62.8828.
P.Y. Yu, and M. Cardona, Fundamentals of Semiconductors, (Springer-Verlag, Berlin, 1996).
M.Q. Cai, Z. Yin, and M.S. Zhang, Appl. Phys. Letts, 83, 2805 (2003), https://doi.org/10.1063/1.1616631.
S. Sharma, A.S. Verma, R. Bhandari, S. Kumari, and V.K. Jindal, Materials Science in Semiconductor Processing, 27, 79-96 (2014), https://doi.org/10.1016/j.mssp.2014.06.015.
J.C. Rife, R.N. Dexter, P.M. Bridenbaugh, and B.W. Veal, Phys. Rev. B, 16, 4491 (1977), https://doi.org/10.1103/PhysRevB.16.4491.
J.F. Nye, Physical Properties of Crystals, Their Representation by Tensors and Matrices, (Oxford Univ. Press, Oxford, USA, 1985).
W. Voigt, Lehrbuch der Kristallphysik, (Teubner, Leipzig, 1928).
I.R. Shein, and A.L. Ivanovskii, Scripta Materiali, 59, 1099-1002 (2008), https://doi.org/10.1016/j.scriptamat.2008.07.028.
A. Reuss, and Z. Angew. Math. Mech. 9, 55 (1929), https://doi.org/10.1002/zamm.19290090104.
R. Hill, Proc. Phys. Soc. Lond. A, 65, 349 (1952), https://doi.org/10.1088/0370-1298/65/5/307.
S.F. Pugh, Philos. Mag. 45, 823-843 (1953), https://doi.org/10.1080/14786440808520496.
K. Chen, L. Zhao, and J.S. Tse, J. Appl. Phys. 93, 2414 (2003), https://doi.org/10.1063/1.1540742.
K. Chen, L. Zhao, J.S. Tse, and J.R. Rodgers, Phys. Lett. A, 331, 400 (2004), https://doi.org/10.1016/j.physleta.2004.09.034.
M.A. Blanco, E. Francisco, and V. Luaña, Comput. Phys. Commun. 158, 57 (2004), https://doi.org/10.1016/j.comphy.2003.12.001.
M.A. Blanco, A. Martín Pendás, E. Francisco, J.M. Recio, and R. Franco, J. Mol. Struct. Theochem. 368, 245 (1996), https://doi.org/10.1016/S0166-1280(96)90571-0.
M. Flórez, J.M. Recio, E. Francisco, M.A. Blanco, and A.M. Pendás, Phys. Rev. B, 66, 144112 (2002), https://doi.org/10.1103/PhysRevB.66.144112.
E. Francisco, M.A. Blanco, and G. Sanjurjo, Phys. Rev. B, 63, 094107 (2001), https://doi.org/10.1103/PhysRevB.63.094107.
J.P. Poirier, Introduction to the Physics of Earth’s Interior, (Cambridge University Press, Oxford, 2000), pp. 39.
A.S. Verma, and S.R. Bhardwaj, J. Phys: Condensed Matter, 19, 026213 (2007), https://doi.org/10.1088/0953-8984/19/2/026213.
R. Gautam, P. Singh, S. Sharma, S. Kumari, and A.S. Verma, Superlattices and Microstructures, 85, 859-871 (2015), https://doi.org/10.1016/j.spmi.2015.07.014.
B.G. Streetman, and S.K. Banerjee, Solid State Electronic Devices' 6th ed. (Pearson College Div, 2010), pp. 581.
Y.P. Varshni, Physica, 34, 149 (1967), https://doi.org/10.1016/0031-8914(67)90062-6.
B.O. Seraphin, editor, Solar Energy Conversion–Solid State Physics Aspects Topics in Applied Physics, Volume 31, (Springer-Verlag, Heidelberg, 1979), https://doi.org/10.1007/3-540-09224-2.
S.M. Sze, Physics of semiconductor devices, 2nd ed. (John Wiley and Sons, NY, 1981), pp. 880.
P. Wurfel, Physics of Solar Cells, (Wiley-VCH Verlag, Weinheim, 2005), pp. 188.
V. Kumar, A.K. Shrivastava, R. Banerji, and D. Dhirhe, Solid State Communications, 149, 1008-1011 (2009), https://doi.org/10.1016/j.ssc.2009.04.003.
A.S. Verma, S. Sharma, and V.K. Jindal, Mod. Phys. Letts. B, 24, 2511 (2010), https://doi.org/10.1142/S0217984910024821.
A.S. Verma, Phys. Status Solidi B, 246, 192 (2009), https://doi.org/10.1002/pssb.200844242.
A.S. Verma, and D. Sharma, Phys. Scr. 76, 22 (2007), https://doi.org/10.1088/0031-8949/76/1/004.
K.F. Young, and H.P.R. Fredrikse, J. Phys. Chem. Ref. Data 2, 313 (1973), https://doi.org/10.1063/1.3253121.
K.K. Kima, S. Niki, J.Y. Oh, J. Song, T.Y. Seong, S.J. Park, S. Fujita, and S.W. Kimb, J. Appl. Phys. 97, 066103 (2005), https://doi.org/10.1063/1.1863416.
M.A. Bodea, G. Sbarcea, G.V. Naik, A. Boltasseva, T.A. Klar, and J.D. Pedarnig, Appl. Phys. A, 110, 929 (2013), https://doi.org/10.1007/s00339-012-7198-6.
S. Mondal, S.R. Bhattacharyya, and P. Mitra, Pramana J. Physics, 80, 315 (2013), https://doi.org/10.1007/s12043-012-0463-6.
R.K. Swank, Phys. Rev. 153, 844 (1967), https://doi.org/10.1103/PhysRev.153.844.
Z.C. Feng, editor, Handbook of Zinc Oxide and Related Materials: Devices and Nano Engineering, Volume 2, (CRC Press/Taylor & Francis, Boca Raton, FL, 2012).
M.A. Olopade, O.O. Oyebola, and B.S. Adeleke, Adv. Appl. Sci. Res. 3, 3396 (2012), https://www.researchgate.net/profile/Muteeu_Olopade/publication/283294216_Investigation_of_some_materials_as_buffer_layer_in_copper_zinc_tin_sulphide_Cu2ZnSnS4_solar_cells_by_SCAPS-1D/links/5699290108aea14769432a39.pdf.
X. Yang, C. Xu, and N.C. Giles, J. Appl. Phys. 104, 073727 (2008), https://doi.org/10.1063/1.2996032.
B.K. Meyer, ZnO: electron and hole mobilities, Landolt-Börnstein-Group III, Condensed Matter, 44D, 610 (2011).
M. Burgelman, K. Decock, S. Khelifi, A. Abass, Thin Solid Films, 535, 296 (2013), https://doi.org/10.1016/j.tsf.2012.10.032.
M.A. Green, Solar Cells, Operating Principles, Technology and System Applications, Prentice Hall Inc., (1982)
W.E. Spear, J. Mort, Proc. Phys. Soc. 81, 130 (1963), https://doi.org/10.1088/0370-1328/81/1/319.
M.S. Hossain, M.M. Aliyu, M.A. Matin, M.A. Islam, M.R. Karim, T. Razykov, K. Sopian, and N. Amina, Int. J. Mech. Mater. Eng. 6, 350 (2011).
H.J. Moller, Progress in Materials Science 35, 205-418 (1991), https://doi.org/10.1016/0079-6425(91)90001-A.
S. Siebentritt, U. Rau, Wide-Gap Chalcopyrites, (Springer, 2006).
Copyright (c) 2021 Neeraj, Ajay Singh Verma
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).