Structure and Properties of ZnSnP2 With the Application in Photovoltaic Devices by Using CdS and ZnTe Buffer Layers

  • Neeraj Neeraj Department of Physics, Banasthali Vidyapith, Rajasthan, India
  • Ajay Singh Verma Department of Natural and Applied Sciences, School of Technology, Glocal University Saharanpur, Uttar Pradesh, India https://orcid.org/0000-0001-8223-7658
Keywords: Ab-initio calculations, electronic properties, мelastic constants, thermodynamic properties

Abstract

Ab initio calculations have been performed by the linearized augmented plane wave (LAPW) method as implemented in the WIEN2K code within the density functional theory to obtain the structural, electronic and optical properties of ZnSnP2 in the body centered tetragonal (BCT) phase. The six elastic constants (C11, C12, C13, C33, C44 and C66) and mechanical parameters have been presented and compared with the available experimental data. The thermodynamic calculations within the quasi-harmonic approximation is used to give an accurate description of the pressure-temperature dependence of the thermal-expansion coefficient, bulk modulus, specific heat, Debye temperature, entropy Grüneisen parameters. Based on the semi-empirical relation, we have determined the hardness of the material; which attributed to different covalent bonding strengths. Further, ZnSnP2 solar cell devices have been modeled; device physics and performance parameters have analyzed for ZnTe and CdS buffer layers. Simulation results for ZnSnP2 thin layer solar cell show the maximum efficiency (22.9%) with ZnTe as the buffer layer. Most of the investigated parameters are reported for the first time.

Downloads

Download data is not yet available.

References

S. Mukherjee, T. Maitra, A. Nayak, A. Pradhan, M. K. Mukhopadhyay, B. Satpati, and S. Bhunia, Materials Chemistry and Physics 204, 147-153 (2018), https://doi.org/10.1016/j.matchemphys.2017.10.014.

S. Sharma, and A.S. Verma, Eur. Phys. J. B, 87, 159 (2014), https://doi.org/10.1140/epjb/e2014-41097-2.

S. Sahin, Y.O. Ciftci, K. Colakoglu and N. Korozlu, J. Alloy. Comp. 529, 1-7 (2012), https://doi.org/10.1016/j.jallcom.2012.03.046.

A.D. Martinez, E.L. Warren, P. Gorai, K.A. Borup, D. Kuciauskas, P.C. Dippo, and S.W. Boettcher, Energy & Environmental Science, 9, 1031-1041 (2016), https://doi.org/10.1039/C5EE02884A.

A.D. Martinez, A.N. Fioretti, E.S. Toberer, and A.C. Tamboli, J. Materials Chemistry A, 5, 11418-11435 (2017), https://doi.org/10.1039/C7TA00406K.

K. Miyauchi, T. Minemura, K. Nakatani, H. Nakanishi, M. Sugiyama, and S. Shirakata, Phys. Stat. Sol. C, 6, 1116 (2009), https://doi.org/10.1002/pssc.200881170.

S. Nakatsuka, S. Akari, J. Chantana, T. Minemoto, and Y. Nose, ACS Applied Materials & Interfaces, 9, 33827-33832 (2017), https://doi.org/10.1021/acsami.7b08852.

S. Nakatsuka, N. Yuzawa, J. Chantana, T. Minemoto, and Y. Nose, Physica Status Solidi A, 214, 1600650 (2017), https://doi.org/10.1002/pssa.201600650.

D.O. Scanlon, and A. Walsh, Appl. Phys. Letts. 100, 251911 (2012), https://doi.org/10.1063/1.4730375.

P.C. Sreeparvathy, V. Kanchana, and G. Vaitheeswaran, J. Appl. Phys, 119, 085701 (2016), https://doi.org/10.1063/1.4942011.

A.S. Verma, Mat. Chem. Phys. 139, 256 (2013), https://doi.org/10.1016/j.matchemphys.2013.01.032.

N. Yuzawa, J. Chantana, S. Nakatsuka, Y. Nose, and T. Minemoto, Curr. Appl. Phys. 17, 557-564 (2017), https://doi.org/10.1016/j.cap.2017.02.005.

Y. Zhang, Comp. Mat. Sci. 133, 152-158 (2017), https://doi.org/10.1016/j.commatsci.2017.03.016.

G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, and L. Nordström, Phys. Rev. B, 64, 195134 (2001), https://doi.org/10.1103/PhysRevB.64.195134.

K. Schwarz, P. Blaha, and G.K.H Madsen, Comput. Phys. Commun. 147, 71 (2002), https://doi.org/10.1016/S0010-4655(02)00206-0.

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, in: WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, edited by K. Schwarz (Techn. Universität Wien, Austria, 2001).

Z. Wu, and R.E. Cohen, Phys. Rev. B, 73, 235116 (2006), https://doi.org/10.1103/PhysRevB.73.235116.

F. Tran, R. Laskowski, P. Blaha, and K. Schwarz, Phys. Rev. B, 75, 115131 (2007), https://doi.org/10.1103/PhysRevB.75.115131.

W. Kohn, and L.J. Sham, Phys. Rev. 140, A1133 (1965), https://doi.org/10.1103/PhysRev.140.A1133.

J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996), https://doi.org/10.1103/PhysRevLett.77.3865.

F. Tran and P. Blaha, Phys. Rev. Letts. 102, 226401 (2009), https://doi.org/10.1103/PhysRevLett.102.226401.

P.E. Blochl, O. Jepsen, and O.K. Andersen, Phys. Rev. B, 49, 16223 (1994), https://doi.org/10.1103/PhysRevB.49.16223.

F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244-247 (1947), https://doi.org/10.1073/pnas.30.9.244.

V.L. Shaposhnikov, A.V. Krivosheeva, V.E. Borisenko, J.L. Lazzari, and F.A. Avitaya, Phys. Rev. B, 85, 205201 (2012), https://doi.org/10.1103/PhysRevB.85.205201.

J. Sun, H.T. Wang, N.B. Ming, J. He, and Y. Tian, Appl. Phys. Letts. 84, 4544 (2004), https://doi.org/10.1063/1.1758781.

S. Saha, and T.P. Sinha, Phys. Rev. B, 62, 8828 (2000), https://doi.org/10.1103/PhysRevB.62.8828.

P.Y. Yu, and M. Cardona, Fundamentals of Semiconductors, (Springer-Verlag, Berlin, 1996).

M.Q. Cai, Z. Yin, and M.S. Zhang, Appl. Phys. Letts, 83, 2805 (2003), https://doi.org/10.1063/1.1616631.

S. Sharma, A.S. Verma, R. Bhandari, S. Kumari, and V.K. Jindal, Materials Science in Semiconductor Processing, 27, 79-96 (2014), https://doi.org/10.1016/j.mssp.2014.06.015.

J.C. Rife, R.N. Dexter, P.M. Bridenbaugh, and B.W. Veal, Phys. Rev. B, 16, 4491 (1977), https://doi.org/10.1103/PhysRevB.16.4491.

J.F. Nye, Physical Properties of Crystals, Their Representation by Tensors and Matrices, (Oxford Univ. Press, Oxford, USA, 1985).

W. Voigt, Lehrbuch der Kristallphysik, (Teubner, Leipzig, 1928).

I.R. Shein, and A.L. Ivanovskii, Scripta Materiali, 59, 1099-1002 (2008), https://doi.org/10.1016/j.scriptamat.2008.07.028.

A. Reuss, and Z. Angew. Math. Mech. 9, 55 (1929), https://doi.org/10.1002/zamm.19290090104.

R. Hill, Proc. Phys. Soc. Lond. A, 65, 349 (1952), https://doi.org/10.1088/0370-1298/65/5/307.

S.F. Pugh, Philos. Mag. 45, 823-843 (1953), https://doi.org/10.1080/14786440808520496.

K. Chen, L. Zhao, and J.S. Tse, J. Appl. Phys. 93, 2414 (2003), https://doi.org/10.1063/1.1540742.

K. Chen, L. Zhao, J.S. Tse, and J.R. Rodgers, Phys. Lett. A, 331, 400 (2004), https://doi.org/10.1016/j.physleta.2004.09.034.

M.A. Blanco, E. Francisco, and V. Luaña, Comput. Phys. Commun. 158, 57 (2004), https://doi.org/10.1016/j.comphy.2003.12.001.

M.A. Blanco, A. Martín Pendás, E. Francisco, J.M. Recio, and R. Franco, J. Mol. Struct. Theochem. 368, 245 (1996), https://doi.org/10.1016/S0166-1280(96)90571-0.

M. Flórez, J.M. Recio, E. Francisco, M.A. Blanco, and A.M. Pendás, Phys. Rev. B, 66, 144112 (2002), https://doi.org/10.1103/PhysRevB.66.144112.

E. Francisco, M.A. Blanco, and G. Sanjurjo, Phys. Rev. B, 63, 094107 (2001), https://doi.org/10.1103/PhysRevB.63.094107.

J.P. Poirier, Introduction to the Physics of Earth’s Interior, (Cambridge University Press, Oxford, 2000), pp. 39.

A.S. Verma, and S.R. Bhardwaj, J. Phys: Condensed Matter, 19, 026213 (2007), https://doi.org/10.1088/0953-8984/19/2/026213.

R. Gautam, P. Singh, S. Sharma, S. Kumari, and A.S. Verma, Superlattices and Microstructures, 85, 859-871 (2015), https://doi.org/10.1016/j.spmi.2015.07.014.

B.G. Streetman, and S.K. Banerjee, Solid State Electronic Devices' 6th ed. (Pearson College Div, 2010), pp. 581.

Y.P. Varshni, Physica, 34, 149 (1967), https://doi.org/10.1016/0031-8914(67)90062-6.

B.O. Seraphin, editor, Solar Energy Conversion–Solid State Physics Aspects Topics in Applied Physics, Volume 31, (Springer-Verlag, Heidelberg, 1979), https://doi.org/10.1007/3-540-09224-2.

S.M. Sze, Physics of semiconductor devices, 2nd ed. (John Wiley and Sons, NY, 1981), pp. 880.

P. Wurfel, Physics of Solar Cells, (Wiley-VCH Verlag, Weinheim, 2005), pp. 188.

V. Kumar, A.K. Shrivastava, R. Banerji, and D. Dhirhe, Solid State Communications, 149, 1008-1011 (2009), https://doi.org/10.1016/j.ssc.2009.04.003.

A.S. Verma, S. Sharma, and V.K. Jindal, Mod. Phys. Letts. B, 24, 2511 (2010), https://doi.org/10.1142/S0217984910024821.

A.S. Verma, Phys. Status Solidi B, 246, 192 (2009), https://doi.org/10.1002/pssb.200844242.

A.S. Verma, and D. Sharma, Phys. Scr. 76, 22 (2007), https://doi.org/10.1088/0031-8949/76/1/004.

K.F. Young, and H.P.R. Fredrikse, J. Phys. Chem. Ref. Data 2, 313 (1973), https://doi.org/10.1063/1.3253121.

K.K. Kima, S. Niki, J.Y. Oh, J. Song, T.Y. Seong, S.J. Park, S. Fujita, and S.W. Kimb, J. Appl. Phys. 97, 066103 (2005), https://doi.org/10.1063/1.1863416.

M.A. Bodea, G. Sbarcea, G.V. Naik, A. Boltasseva, T.A. Klar, and J.D. Pedarnig, Appl. Phys. A, 110, 929 (2013), https://doi.org/10.1007/s00339-012-7198-6.

S. Mondal, S.R. Bhattacharyya, and P. Mitra, Pramana J. Physics, 80, 315 (2013), https://doi.org/10.1007/s12043-012-0463-6.

R.K. Swank, Phys. Rev. 153, 844 (1967), https://doi.org/10.1103/PhysRev.153.844.

Z.C. Feng, editor, Handbook of Zinc Oxide and Related Materials: Devices and Nano Engineering, Volume 2, (CRC Press/Taylor & Francis, Boca Raton, FL, 2012).

M.A. Olopade, O.O. Oyebola, and B.S. Adeleke, Adv. Appl. Sci. Res. 3, 3396 (2012), https://www.researchgate.net/profile/Muteeu_Olopade/publication/283294216_Investigation_of_some_materials_as_buffer_layer_in_copper_zinc_tin_sulphide_Cu2ZnSnS4_solar_cells_by_SCAPS-1D/links/5699290108aea14769432a39.pdf.

X. Yang, C. Xu, and N.C. Giles, J. Appl. Phys. 104, 073727 (2008), https://doi.org/10.1063/1.2996032.

B.K. Meyer, ZnO: electron and hole mobilities, Landolt-Börnstein-Group III, Condensed Matter, 44D, 610 (2011).

M. Burgelman, K. Decock, S. Khelifi, A. Abass, Thin Solid Films, 535, 296 (2013), https://doi.org/10.1016/j.tsf.2012.10.032.

M.A. Green, Solar Cells, Operating Principles, Technology and System Applications, Prentice Hall Inc., (1982)

W.E. Spear, J. Mort, Proc. Phys. Soc. 81, 130 (1963), https://doi.org/10.1088/0370-1328/81/1/319.

M.S. Hossain, M.M. Aliyu, M.A. Matin, M.A. Islam, M.R. Karim, T. Razykov, K. Sopian, and N. Amina, Int. J. Mech. Mater. Eng. 6, 350 (2011).

H.J. Moller, Progress in Materials Science 35, 205-418 (1991), https://doi.org/10.1016/0079-6425(91)90001-A.

S. Siebentritt, U. Rau, Wide-Gap Chalcopyrites, (Springer, 2006).

Published
2021-02-13
Cited
How to Cite
Neeraj, N., & Verma, A. S. (2021). Structure and Properties of ZnSnP2 With the Application in Photovoltaic Devices by Using CdS and ZnTe Buffer Layers. East European Journal of Physics, (1), 63-79. https://doi.org/10.26565/2312-4334-2021-1-09