Hydrodynamic Model of Transport System

Keywords: hydrodynamic model of a transport system, two-moment description, Hooke model, balance equations, PDE production model


A hydrodynamic model of production systems with a flow method of organizing production is considered. The basic macro-parameters of the state of the production flow line and the relationship between them are determined. The choice of a lot of moment approximation for modelling the production line is justified. It is shown that the conveyor-type flow line is a complex dynamic system with distributed parameters. The boundary value problem is formulated for the longitudinal vibrations of the conveyor belt when the material moves along the transportation route. It is assumed that there is no sliding of material along the conveyor belt, and the deformation that occurs in the conveyor belt is proportional to the applied force (Hooke's elastic deformation model). The significant effect of the uneven distribution of the material along the transportation route on the propagation velocity of dynamic stresses in the conveyor belt is shown. When constructing the boundary and initial conditions, the recommendations of DIN 22101: 2002-08 were used. The mechanism of the occurrence of longitudinal vibrations of the conveyor belt when the material moves along the transportation route is investigated. The main parameters of the model that cause dynamic stresses are determined. It is shown that dynamic stresses are formed as a result of a superposition of stresses in the direct and reflected waves. Analytical expressions are written that make it possible to calculate the magnitude of dynamic stresses in a conveyor belt and determine the conditions for the occurrence of destruction of the conveyor belt. The characteristic phases of the initial movement of the material along the technological route are considered. The process of the emergence of dynamic stresses with the constant and variable acceleration of the conveyor belt is investigated. The dynamics of stress distribution along the transportation route is presented. It is shown that the value of dynamic stresses can exceed the maximum permissible value, which leads to the destruction of the conveyor belt or structural elements. The transition period is estimated, which is required to ensure a trouble-free mode of transport operation during acceleration or braking of the conveyor belt. The use of dimensionless parameters allows us to formulate criteria for the similarity of conveyor systems.


Download data is not yet available.


N.A. Azarenkov, O.M. Pihnastyi and V.D. Khodusov, Reports of the National Academy of Sciences of Ukraine, 2, 29-35 (2011), http://dspace.nbuv.gov.ua/handle/123456789/37227.

O.M. Pihnastyi, Problems of Atomic science and technology, 3, 322–325 (2007), http://dspace.nbuv.gov.ua/handle/123456789/111018.

O.M. Pihnastyi, Belgorod State University Scientific Bulletin, 31(1), 147–157 (2014), https://ssrn.com/abstract=3404364.

O.M. Pihnastyi, Scientific bulletin of National Mining University, 4, 104–111 (2017), http://nbuv.gov.ua/UJRN/Nvngu_2017_4_18.

N.A. Azarenkov, O.M. Pihnastyi and V.D. Khodusov, Reports of the National Academy of Sciences of Ukraine, 12, 36-43 (2014), https://doi.org/10.15407/dopovidi2014.12.036.

D. He, Y. Pang, G. Lodewijks and X. Liu. Powder Technology, 327, 408–419 (2018), http://dx.doi.org/10.1016/j.powtec.2018.01.002.

T. Mathaba and X. Xia, Energies, 8(12), 13590–13608 (2015), https://doi.org/10.3390/en81212375.

G. Yang, Sensors & Transducers, 81(10), 210–218 (2014), https://www.sensorsportal.com/HTML/DIGEST/P_2492.htm.

A.A. Reutov, in: IOP Conference Series: Earth and Environmental, 87, (2017), https://doi.org/10.1088/1755-1315/87/8/082041.

I.A. Halepoto and S. Khaskheli, Indian Journal of Science and Techology, 9(47), 1–6 (2016), http://dx.doi.org/10.17485/ijst%2F2016%2Fv9i47%2F108658.

L. Ristic, M. Bebic and B. Jeftenic, Electronics, 17, 30–39 (2013). http://dx.doi.org/10.7251/ELS1317030R.

L. Xinglei, Yu. Hongbin, in: Proceedings of the 3rd International Conference on Mechanical Engineering and Intelligent Systems (ICMEIS, 2015), pp. 789–793, https://doi.org/10.2991/icmeis-15.2015.148.

E. Wolstenholm, Dynamica, 6(2), 25–35 (1980), https://www.systemdynamics.org/assets/dynamica/62/6.pdf.

M. Andrejiova, D. Marasova, Acta Montanistica Slovaca, 18(2), 77–84 (2013), https://actamont.tuke.sk/pdf/2013/n2/2andrejiova.pdf.

P. Markos and A. Dentsoras, FME Transactions, 46, P.313–319 (2018), https://scindeks-clanci.ceon.rs/data/pdf/1451-2092/2018/1451-20921803313M.pdf

M. Bajda, R. Krol, Procedia Earth and Planetary Science, 15, 702–711 (2015), https://doi.org/10.1016/J.PROEPS.2015.08.098.

A. Kumar and L.P. Singh, International journal of engineering sciences & research technology system, 6(9), 337–341 (2017), http://www.ijesrt.com/issues%20pdf%20file/Archive-2017/September-2017/43.pdf

V. Pasika, P. Koruniak, P. Nosko, O. Bashta and Yu. Tsibrii, Bulletin of NTU "KhPI": Series: New solutions in modern technologies. 45(1321), P.47–58 (2018). https://doi.org/10.20998/2413-4295.2018.45.07.

Shirong Zhang, Xiaohua Xia, in: IEEE AFRICON–2009, (Nairobi, Kenya, 23–25 September 2009), pp. 17-27. https://doi.org/10.1109/AFRCON.2009.5308257.

S. Gramblička, R. Kohár and M. Stopka, Procedia Engineering, 192, 259-264 (2017), https://doi.org/10.1016/j.proeng.2017.06.045.

DIN 22101:2002-08. Continous conveyors. Belt conveyors for loose bulk materials. Basics for calculation and dimensioning. [Normenausschuss Bergbau (FABERG), DIN Deutsches Institut für Normung e.v. Normenausschuss Maschinenbau (NAM)], (2002), pp. 51.

V.A. Budishevsky and A.A. Sulima, Theoretical foundations and calculations of transport of energy-intensive industries, (1999). pp. 216, http://ea.donntu.org:8080/jspui/handle/123456789/10466. (in Russian)

M. Alspaugh, 2004, in: MINExpo-2004, (New York, Las Vegas, NV, USA, 2004), pp. 17-27, http://fliphtml5.com/pfyf/pccg/basic.

B. Karolewski and P. Ligocki, Maintenance and reliability, 16(2), 179-187 (2014), http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-ce355084-3e77-4e6b-b4b5-ff6131e77b30/c/karolewski_2014-02-02_en.pdf.

H. Lauhoff, Bulk Solids Handling Publ. 25(6), 368-377 (2005), http://synergy-eng.com/pdf/BSH-2005_Beltspeed_Lauhoff.pdf.

N.F. Timerbaev, A.R. Sadrtdinov, D.B. Prosvirnikov, A.А. Fomin and V.V. Stepanov, in: IOP Conf. Series: Earth and Environmental Science (IPDME 2017), 87, 1–9 (2017), https://doi.org/10.1088/1755-1315/87/8/082047.

C.A. Wheeler, in: International Materials Handling Conference (Beltcon) 12, (Johannesburg, South Africa, 2003), pp.1–11. http://www.saimh.co.za/beltcon/beltcon12/paper1208.htm.

Y. Lu and Q. Li, Measurement and Control, 52, 441-448 (2019), https://doi.org/10.1177/0020294019840723.

A. Harrison, Bulk Solids Handling, 28(4), 242-247 (2008), https://static.wpe.au.syrahost.com/var/m_c/c1/c10/35361/296385-bsh2008_non-linear_dynamics.pdf?download.

A. Semenchenko, M. Stadnik, P. Belitsky, D. Semenchenko and O. Stepanen, Eastern-European Journal of Enterprise Technologies, 4/1, 42–51 (2019), https://doi.org/10.15587/1729-4061.2016.75936.

V.V. Degtjarev, Нормирование топливно-энергетических ресурсов и регулирование режимов энергопотребления [Rationing of fuel and energy resources and regulation of energy consumption modes], (Nedra, Moscow, 1983), pp. 225, http://www.xn--80affsqimkl5h.xn--p1ai/_ld/7/735__-.pdf. (in Russian)

O.M. Pihnastyi, Scientific bulletin of National Mining University, 6, 44-51 (2019).

J. Antoniak, Transport Problems, 5(4), 5-14 (2010), http://transportproblems.polsl.pl/pl/Archiwum/2010/zeszyt4/2010t5z4_01.pdf.

O.M. Pihnastyi and V.D. Khodusov, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming & Computer Software (Bulletin SUSUMMCS), 10, 67-77 (2017), https://doi.org/10.14529/mmp170407.

O.M. Pihnastyi. Statistical theory of production systems, (Kharkіv: KhNU, 2007), pp. 388.

R. Pascual, V. Meruane and G. Barrientos, in: Proceedings of the XXVI Iberian Latin-American Congress on Computational Methods in Engineering CILAMCE 2005 (CILAMCE-2005, Santo, Brazil, 2005), Paper CIL0620, http://citeseerx.ist.psu.edu/viewdoc/download?doi=

A.O. Spivakovsky and V.A. Dyachkov, Транспортные машины [Transporting machines], (Mechanical Engineering, Moscow, 1983), pp. 487. (in Russian)


Hydrodynamic Kelvin-Voigt Model Transportation System
(2020) East European Journal of Physics

How to Cite
Pihnastyi, O. M., & Khodusov, V. D. (2020). Hydrodynamic Model of Transport System. East European Journal of Physics, (1), 121-136. https://doi.org/10.26565/2312-4334-2020-1-11

Most read articles by the same author(s)