USE OF PHYSICAL KINETICS FOR STUDYING OSCILLATIONS PARAMETERS PRODUCTION LINE
Abstract
Presents modern methods of describing the production system. Shows a consistent relationship between the object (micro level) and streaming (macro level) description of the system. Recorded in two moment approximation linearized equations for small
perturbations of stream parameters of the production line and the conditions for their applicability. In the first method of Lyapunov stability criteria are defined for the parameters of the production line. Using the methods of physical kinetics investigated the dynamics of the perturbation parameters synchronized production line. Oscillation damping mechanism is shown and proved.
Downloads
References
Ambruster D., Ringhofer C. Continuous models for production flows. In Proceedings of the 2004 American Control Conference, T- J. Jo – Boston, MA, USA. – 2004. – P. 4589-4594.
Demuckij V.P., Pignastaya V.S., Pignastyj O.M. Stohasticheskoe opisanie ekonomiko-proizvodstvennyh sistem s massovym vypuskom produkcii // Dopovіdі Nacіonal'noyi akademіyi nauk Ukrayini. – Kyiv: Vidavnychij dіm «Akademperіodika». – 2005. – No.7. – S.66-71.
Pignastyj O.M. Statisticheskaja teorija proizvodstvennyh sistem. – Кh.: KhNU, 2007. – 388 s.
Pignastyj O.M. Inzhenerno-proizvodstvennaja funkcija predpriyatiya s serijnym ili massovym vypuskom produkcii // Voprosy proektirovaniya i proizvodstva konstrukcij letatel'nyh apparatov. – Khar'kov: NAKU. – 2005. – No.42(3). – S.111-117.
Demuckij V. P., Pignastyj O.M. Voprosy ustojchivosti makroskopicheskih parametrov tehnologicheskih processov massovogo
proizvodstva // Dopovіdі Nacіonal'noyi akademіyi nauk Ukrayini. – Kyiv: Vidavnychij dіm «Akademperіodika». – 2006. – No.3. – S. 63-67.
Zhang L. System-theoretic properties of Production Lines. A dissertation submitted the degree of Doctor of Philosophy
(Electrical Engineering: Systems). – Michigan, 2009. – P. 289.
Armbruster D., Degond P., Ringhofer C. A model for the dynamics of large queuing networks and supply chains // SIAM Journal on Applied Mathematics. – 2006. – Vol.83. – P. 896–920.
Berg R., Lefeber E., Rooda K. Modelling and Control of a Manufacturing Flow Line using Partial Differential Equations // IEEE Transactions on Control Systems Technology. – 2008. – Vol.16. – No.1. – P.130-136.
Ambruster D., Ringhofer C. Continuous models for production flows / Proceedings of the 2004 American Control Conference., T- J. Jo – Boston, MA, USA, 2004. – P. 4589-4594.
Armbruster D., Marthaler D., Ringhofer C. Kinetic and fluid model hierarchies for supply chains supporting policy attributes. Bulletin of the Institute of Mathematics // Academica Sinica. – 2006. – Vol.66. – P.896 – 920.
Evgrafov M.A., Bezhanov K.A., Sidorov Ju.V., Fedorjuk M.V, Shabunin M.I. Sbornik zadach po teorii analiticheskih funkcij. – M.: Nauka, 1972. – 416c.
Tian F., Willems S., Kempf K. An iterative approach to item-level tactical production and inventory planning. // International Journal of Production Economics. – 2011. – Vol. 33. – P. 439-450.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).