Structural State Effect on Mechanical Properties and Acoustic Emission of High-Purity Titanium at Different Types of Deformation

Keywords: high-purity titanium, nanostructure, tension and compression, Hall-Petch relation


The results on investigations of mechanical properties of high-purity titanium with grains ranging from tens of nanometers up to a few micrometers subjected to uniaxial tension, compression and microindenting are presented. Different structural states in high-purity titanium were formed by severe plastic deformation according to the scheme «upsetting – extrusion – drawing» in combination with annealing at temperatures of 250–550° C and quasi-hydrostatic extrusion at room and liquid nitrogen temperatures. The values of yield strengths and microhardness for samples of high-purity titanium with grains of different sizes are determined. It was shown that the combination of severe plastic deformation with cryogenic quasi-hydrostatic extrusion allowed to create high-purity nanocrystalline titanium with high mechanical properties. The obtained experimental data were analyzed for the implementation of the Hall-Petch relation and discrepancy between the values of yield strengths in tension and compression (strength differential or S-D effect). Satisfactory fulfillment of the Hall-Petch relation for high-purity titanium in the whole range of the studied grain size values was shown and a noticeable difference in the yield values for compression and tension was found. The values of the coefficients in the Hall-Petch equation for deformation by tension, compression and microindenting were determined. These coefficients are noticeably lower than the corresponding values for the industrial grades of titanium, i.e. in high-purity titanium, the grain boundaries are weaker barriers for moving dislocations than in the industrial titanium, whose boundaries are enriched with impurities. The features of the acoustic waves emission during compression of samples in various structural states were studied. It was concluded that the deformation of titanium in all the investigated structural states was carried out by dislocation slip.


Download data is not yet available.


H.J. Rack and Qazi, Mater. Sci. Eng. C. 26, 1269 (2006).

R.Z. Valiev, I.P. Semionova, V.V. Latyshev, А.V. Shcherbakov, Е.B. Yakushina, Российские нанотехнологии [Russian Nanotechnologies]. 3(9-10), 106 (2008). (in Russian).

Биосовместимость [Biocompatibility], (Ed. by V.I.Sevastianov, IC VNIIIgeosystem, Moscow, 1999), p. 368. (in Russian).

А.М.Glezer, УФН [Physics-Uspekhi (Advances in Physical Sciences)]. 182, 559 (2012). (in Russian).

R.Z. Valiev, I.А. Аleksandrov, Объемные наноструктурные материалы: получение, структура и свойства [Bulk Nanostructured Materials: Mnufacturing, Structure, and Properties], (Akademkniga, Моscow, 2007), p. 398. (in Russian).

А.А. Popov, R.Z. Valiev, I.Yu. Pyshmintsev, S.L. Demakov, А.G. Illarionov, ФММ [The Physics of Metals and Metallography]. 83, 127 (1997). (in Russian).

R.Z. Valiev, A.V. Sergueeva, and A.K. Mukherjee, Scripta Mater. 49, 669 (2003).

S.P.Malysheva, G.A. Salishchev, R.M. Galeyev, V.N.Danilenko, М.М. Мyshliayev, А.А.Popov, ФММ [The Physics of Metals and Metallography]. 95, 98 (2003). (in Russian).

Y. Beygelzimer, V. Varyukhin, D. Orlov, B. Efros, V. Stolyarov, and H. Salimgareyev, in: TMS Annual Meeting, Ultrafine Grained Materials II, (Washington, 2002), p. 43.

А.Yu. Yeroshenko, Yu.P. Sharkeyev, А.I. Tolmachov, G.P.Korobitsyn, V.I.Danilov, Перспективные материалы [Advanced Materials]. 7, 107 (2009). (in Russian).

I.M. Neklyudov, V.I. Sokolenko, L.A. Chirkina, G.P. Kovtun, I.F. Borisova, V.V. Kalinovskiy, D.G. Malykhin, E.N. Metolidi, V.S. Okovit, Металлофиз. и новейшие технологии [Metallofizika i Noveishie Tekhnologii]. 29, 359 (2007). (in Russian).

E.D. Tabachnikova, A.V. Podolskiy, S.N. Smirnov, M.A. Tikhonovsky, P.A. Khaimovich, N.I. Danylenko, S.A. Firstov, Вісник Харківського національного університету, Серія «Фізика» [Visnyk Kharkivs’kogo Natsional’nogo Universytetu, Seriya “Fizyka”]. 28, 63 (2018). (in Ukrainian).

M.A. Tikhonovskii, I.F. Kislyak, O.I. Volchok, T.Yu. Rudycheva, V.G.Yarovoi, A.V. Kuz’min, N.V. Kamyshanchenko, and I.S. Nikulin, ФТВД [Physics and Technology of High Pressures]. 18, 96 (2008). (in Russian).

K.V. Kutniy , O.I. Volchok, I.F. Kislyak, M.A. Tikhonovsky, and G.E. Storozhilov, Mater. Sci. Engineering Technology (Mat.-wiss.u.Werkstofftech.). 42, 114 (2011).

V.A. Moskalenko, А.R. Smirnov, and A.V. Moskalenko, ФНТ [Low Temp. Phys.]. 35, 1160 (2009). (in Russian).

M.A. Tikhonovsky, P.A. Khaimovich, K.V. Kutniy, I.F. Kislyak, V. S. Okovit, and T.Yu. Rudycheva, ФНТ [Low Temp. Phys.]. 39, 1261 (2013). (in Russian).

P. Lukáč, Z. Trojanová, Materials Engineering. 18, 110 (2011).

А.V. Nokhrin, V.N. Chuvil’deyev, Е.S. Smirnova et. al. Механические свойства нано- и микрокристаллических металлов. [Mechanical Properties of Nano- and Microcrystalline Metals] (NNGU, Nizhniy Novgorod, 2007), p. 46. (in Russian).

J.P. Hirth and M. Kohen, Met. Trans. 1, 3 (1970).

C.A. Pampillo, L.A. Davis, and J.C.M. Li, Scripta Met. 6, 765 (1972).

H. Tanaka and R. Horiuchi, Scripta Met. 9, 777 (1975).

M. Frizel and S.H. Carpenter, Metall. Trans. 15A, 1849 (1984).

J.R. Kennedy, Scripta Met. 16, 525 (1982).

P.I. Stoev, I.I. Papirov, and V.I. Moshchenok, Вопросы атомной науки и техники, Серия: Вакуум, чистые материалы, сверхпроводники [Problems of Atomic Science and Technology. Section: Vacuum, Pure Materials and Superconductors]. 15(1), 15 (2006). (in Russian).

P.I. Stoev, I.I. Papirov, Вопросы атомной науки и техники, Серия: Вакуум, чистые материалы, сверхпроводники [Problems of Atomic Science and Technology. Section: Vacuum, Pure Materials and Superconductors]. 16(4), 119 (2007). (in Russian).

E.Z. Kayumova, V.V. Astanin, and А.А. Girfanova, Письма о материалах [Materials Letters]. 3, 193 (2013). (in Russian).

I.F. Kislyak, K.V. Kutniy, M.A. Tikhonovsky, A.I. Pikalov, T.Yu. Rudycheva, N.F. Andrievskaya, and R.L. Vasilenko, ФТВД [Physics and Technology of High Pressures]. 23, 53 (2013). (in Russian).

P.A. Khaimovich, Low Temperature Physics. 44 (5), 349 (2018).

P.A. Khaimovich, Перспективные материалы [Advanced Materials]. 3, 363 (2009). (in Russian).

I.I. Papirov, P.I. Stoev, G.F.Tikhinskiy, М.I. Palatnik, М.B. Мileshkin, and Е.I. Мuzyka, ФММ [The Physics of Metals and Metallography]. 57(2), 1037 (1984). (in Russian).

E.D. Tabachnikova, V.Z. Bengus, A.V. Podolskiy, S.N. Smirnov, and R.Z.Valiev, Кристаллография [Crystallography]. 54, 1119 (2009). (in Russian).

Т.P. Cherniayeva, А.I. Stukalov, and V.М. Gritsyna, ВАНТ [Problems of Atomic Science and Technology. Section: Vacuum, Pure Materials and Superconductors]. 1, 96 (2002).

М.М. Мyshliayev, S.Yu. Мironov, Физика твердого тела [Solid State Physics]. 44(4), 711 (2002). (in Russian).

Yu.P. Sharkeev, I.А. Kurzina, I.A. Bozhko, and A.Yu. Eroshenko, in: 10-th International Conference on Modification of Materials with Particle Beams and Plasma Flows, Oral Session: Beam and Plasma Nanoscience and Nanotechnology, (Tomsk, Russia, 2010), pp. 705-708. (in Russian).

А.А. Chabanets, in: XVII Международная научно-практическая конференция «Современные техника и технологии», Секция 6: Материаловедение [XVII International Scientific and Commercial Conference “Modern Engineering @ Technologies”. Section 6: Materials Science] (Tomsk, Russia, 2012), pp. 261-262. (in Russian).

I.А. Кurzina, I.А. Bozhko, М.P. Каlashnikov et. al., Материаловедение [Materials Science]. 5, 48 (2010). (in Russian).

V.А. Greshnikov, Yu.V. Drobot, Акустическая эмиссия. Применение для испытаний материалов и изделий [Acoustic Emission: Application for Materials and Products Testing]. (Маshinostroyeniye, Моscow, 1974), p. 368. (in Russian).

P.I. Stoev, I.I. Papirov, Металлофизика [Physics of Metals]. XIII (10), 28 (1991). (in Russian).

M.A. Meyers, A. Mishra, and D.J. Benson, Progress in Materials Science. 51, 427 (2006).

0 article
How to Cite
Kutniy, K., Kislyak, I., Kalchenko, A., Stoev, P., Tikhonovsky, M., & Khaimovich, P. (2019). Structural State Effect on Mechanical Properties and Acoustic Emission of High-Purity Titanium at Different Types of Deformation. East European Journal of Physics, (3), 29-37.