X-Ray Quasi-Monochromatic Source Based on Electrostatic Proton Accelerator
Abstract
The microanalytical facility based on an electrostatic accelerator available at the Institute of Applied Physics, is used to construct a high-intensity quasi-monochromatic X-ray source with ion excitation. The results of ion-optical system modeling for the source are presented. Polycapillary optics is chosen to perform X-ray focusing of radiation, produced by source. K-line yield calculations of characteristic X-rays are performed and compared with experimental data. As preliminary calculations show, 2 MeV proton beams provide the K-line yield similar to that obtained with 30 - 50 keV electron beams but with the bremsstrahlung background reduced by two orders of magnitude. Thus, filters or monochromators are practically unnecessary.
Downloads
References
Otendal M., Tuohimaa T., Vogt U., and Hertz H. M.. A 9 keV electron-impact liquid-gallium-jet x-ray source. // Review of Scientific Instruments, Vol. 79, 016102 (2008).
Avaldi L., Bassi S., Castiglioni M., Milazzo M., Silari M. and Weckerinann B. Experimental results from high-intensity sources of monochromatic X-rays generated by 10-38 MeV protons // Nuclear Instruments and Methods in Physics Research A299 (1990) 240-245.
Harken A. D., Randers-Pehrson G., Johnson G. W., Brenner D. J. The Columbia University proton-induced soft X-ray microbeam // Nuclear Instruments and Methods in Physics Research B 269 (2011), pp. 1992-1996.
Шабельников Л.Г., Денисенко В.Л., Ильяшенко М.В., Сторижко В.Е., Дрозденко А.А., Вершинский С.А. Проект источника квазимонохроматического рентгеновского излучения на базе ускорителя протонов, снабженного рентгенооптической системой // Металлофиз. новейшие технол. - 2010. - Т. 32, вып. 1. - С. 1 - 12.
Cohen D.D. and Harrigan M. K- and L-shell ionization cross sections for protons and helium ions calculated in the ECPSSR theory. At. data and Nucl. data tables 33, 255-343 (1985).
Pia M.G., Weidenspointner G., Augelli M., Quintieri L., Saracco P., Sudhakar M., Zoglauer A. PIXE Simulation With Geant4 // IEEE transactions on nuclear science, Vol. 56, no. 6, 3614-3649 (2009).
Khan Md. R., Crumpton D. and Francois P.E. Proton-induced X-ray production in titanium, nickel, copper, molybdenum and silver // J. Phys. B: At. Mol. Phys. 9 (1976), 455-460.
Folkmann F., Gaarde C., Huuns T. and Kemp K., Proton induced X-ray emission as a tool for trace element analysis, NIM 116 (1974) 487.
Storizhko V.E., Ponomarev A.G., Rebrov V.A., Chemeris A.I., Drozdenko A.A., Dudnik A.B., Miroshnichenko V.I., Sayko N.A., Pavlenko P.A., and Peleshuk L.P.. The Sumy scanning nuclear microprobe: Design features and first tests // Nuclear Instruments and Methods in Physics Research B 260 (2007) p. 49-54.
Сторижко В.Е., Дрозденко А.А., Мирошниченко В.И., Пономарев А.Г. Микроаналитический комплекс на базе компактного электростатического ускорителя ИПФ НАН Украины. // Proc. Int. Conf. Current Problems Nucl. Phys. At. Energy NPAE'2006, 29.05-3.06.2006, Kyiv, Ukraine - Kyiv, 2007, p. 745-753.
Вершинский С. А., Пономарев А. Г., Сторижко В. Е., Денисенко В. Л., Ильяшенко М. В. Оптимизация ионно-оптической системы источника квазимонохроматического рентгеновского излучения на базе электростатического ускорителя // Ядерна фізика та енергетика – 2010. – Т. 11.
Дымников А.Д., Осетинский Г.М. Система формирования протонных пучков микронных размеров // Физика элементарных частиц и атомного ядра. - 1989. - Т. 20, вып. 3. - С. 694 - 733.
Ponomarev A.G., Melnik K.I, Miroshnichenko V.I. Parametric multiplets of magnetic quadrupole lenses: application prospects for probe-forming systems of nuclear microprobe // Nucl. Instr. and Meth. B - 2005. - Vol. 231. - P. 86 - 93.
Дабагов С.Б. Каналирование нейтральных частиц в микро- и нанокапиллярах // Успехи физических наук 173 (2003) 1083-1106.
Lengeler B., Schroer C., Tummler J., Benner B., Richwin M., Snigirev A., Snigireva I., Drakopoulos M. Imaging by parabolic refractive lenses in the hard X-ray range, J. Synchrotron Rad. 6 (1999) 1153.
Snigirev A., Kohn V., Snigireva I., Souvorov A., and Lengeler B. Focusing high-energy X-rays by compound refractive lenses, Applied optics 37 (1998) 653.
Bass M., Ed., “Handbook of Optics: Volume III Classical Optics, Vision Optics, X-Ray Optics” 2nd Ed., Mcgraw-hill Professional Publishing (2000), ISBN: 0071449310.
Tsuji K. et al. X-Ray Spectrometry: Recent Technological Advances // John Wiley & Sons (2004), 616 p.
Kumakhov M.A., Komarov F.F. Multiple reflection from surface x-ray optics. // Physics Reports (Review Section of Physics Letters) 191, 5 (1990), P.289 - 350.
MacDonald C. Focusing Polycapillary Optics and Their Applications // X-Ray Optics and Instrumentation, 2010, 17 pp.
Grieken R. E., Markowicz A. A. (ed.), "Handbook of X-Ray Spectrometry", Second Edition Revised and Expanded, Marcel Dekker, Inc. 2002, New York, Basel.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).