X-Ray Quasi-Monochromatic Source Based on Electrostatic Proton Accelerator

  • S. Vershynskyi Institute of Applied Physics of NAS of Ukraine, Sumy, Ukraine
  • Oleksandr Buhay Institute of Applied Physics of NAS of Ukraine, Sumy, Ukraine https://orcid.org/0000-0002-6813-0413
  • M. Zakharets Institute of Applied Physics of NAS of Ukraine, Sumy, Ukraine
  • Vitaliy Denysenko Институт прикладной физики НАН Украины, Сумы, Украина https://orcid.org/0000-0002-5002-2051
  • Volodymyr Storizhko Institute of Applied Physics of NAS of Ukraine, Sumy, Ukraine
Keywords: X-ray quasi-monochromatic source, electrostatic accelerator, X-ray yield measurements

Abstract

The microanalytical facility based on an electrostatic accelerator available at the Institute of Applied Physics, is used to construct a high-intensity quasi-monochromatic X-ray source with ion excitation. The results of ion-optical system modeling for the source are presented. Polycapillary optics is chosen to perform X-ray focusing of radiation, produced by source. K-line yield calculations of characteristic X-rays are performed and compared with experimental data. As preliminary calculations show, 2 MeV proton beams provide the K-line yield similar to that obtained with 30 - 50 keV electron beams but with the bremsstrahlung background reduced by two orders of magnitude. Thus, filters or monochromators are practically unnecessary.

Downloads

Download data is not yet available.

References

Otendal M., Tuohimaa T., Vogt U., and Hertz H. M.. A 9 keV electron-impact liquid-gallium-jet x-ray source. // Review of Scientific Instruments, Vol. 79, 016102 (2008).

Avaldi L., Bassi S., Castiglioni M., Milazzo M., Silari M. and Weckerinann B. Experimental results from high-intensity sources of monochromatic X-rays generated by 10-38 MeV protons // Nuclear Instruments and Methods in Physics Research A299 (1990) 240-245.

Harken A. D., Randers-Pehrson G., Johnson G. W., Brenner D. J. The Columbia University proton-induced soft X-ray microbeam // Nuclear Instruments and Methods in Physics Research B 269 (2011), pp. 1992-1996.

Шабельников Л.Г., Денисенко В.Л., Ильяшенко М.В., Сторижко В.Е., Дрозденко А.А., Вершинский С.А. Проект источника квазимонохроматического рентгеновского излучения на базе ускорителя протонов, снабженного рентгенооптической системой // Металлофиз. новейшие технол. - 2010. - Т. 32, вып. 1. - С. 1 - 12.

Cohen D.D. and Harrigan M. K- and L-shell ionization cross sections for protons and helium ions calculated in the ECPSSR theory. At. data and Nucl. data tables 33, 255-343 (1985).

Pia M.G., Weidenspointner G., Augelli M., Quintieri L., Saracco P., Sudhakar M., Zoglauer A. PIXE Simulation With Geant4 // IEEE transactions on nuclear science, Vol. 56, no. 6, 3614-3649 (2009).

Khan Md. R., Crumpton D. and Francois P.E. Proton-induced X-ray production in titanium, nickel, copper, molybdenum and silver // J. Phys. B: At. Mol. Phys. 9 (1976), 455-460.

Folkmann F., Gaarde C., Huuns T. and Kemp K., Proton induced X-ray emission as a tool for trace element analysis, NIM 116 (1974) 487.

Storizhko V.E., Ponomarev A.G., Rebrov V.A., Chemeris A.I., Drozdenko A.A., Dudnik A.B., Miroshnichenko V.I., Sayko N.A., Pavlenko P.A., and Peleshuk L.P.. The Sumy scanning nuclear microprobe: Design features and first tests // Nuclear Instruments and Methods in Physics Research B 260 (2007) p. 49-54.

Сторижко В.Е., Дрозденко А.А., Мирошниченко В.И., Пономарев А.Г. Микроаналитический комплекс на базе компактного электростатического ускорителя ИПФ НАН Украины. // Proc. Int. Conf. Current Problems Nucl. Phys. At. Energy NPAE'2006, 29.05-3.06.2006, Kyiv, Ukraine - Kyiv, 2007, p. 745-753.

Вершинский С. А., Пономарев А. Г., Сторижко В. Е., Денисенко В. Л., Ильяшенко М. В. Оптимизация ионно-оптической системы источника квазимонохроматического рентгеновского излучения на базе электростатического ускорителя // Ядерна фізика та енергетика – 2010. – Т. 11.

Дымников А.Д., Осетинский Г.М. Система формирования протонных пучков микронных размеров // Физика элементарных частиц и атомного ядра. - 1989. - Т. 20, вып. 3. - С. 694 - 733.

Ponomarev A.G., Melnik K.I, Miroshnichenko V.I. Parametric multiplets of magnetic quadrupole lenses: application prospects for probe-forming systems of nuclear microprobe // Nucl. Instr. and Meth. B - 2005. - Vol. 231. - P. 86 - 93.

Дабагов С.Б. Каналирование нейтральных частиц в микро- и нанокапиллярах // Успехи физических наук 173 (2003) 1083-1106.

Lengeler B., Schroer C., Tummler J., Benner B., Richwin M., Snigirev A., Snigireva I., Drakopoulos M. Imaging by parabolic refractive lenses in the hard X-ray range, J. Synchrotron Rad. 6 (1999) 1153.

Snigirev A., Kohn V., Snigireva I., Souvorov A., and Lengeler B. Focusing high-energy X-rays by compound refractive lenses, Applied optics 37 (1998) 653.

Bass M., Ed., “Handbook of Optics: Volume III Classical Optics, Vision Optics, X-Ray Optics” 2nd Ed., Mcgraw-hill Professional Publishing (2000), ISBN: 0071449310.

Tsuji K. et al. X-Ray Spectrometry: Recent Technological Advances // John Wiley & Sons (2004), 616 p.

Kumakhov M.A., Komarov F.F. Multiple reflection from surface x-ray optics. // Physics Reports (Review Section of Physics Letters) 191, 5 (1990), P.289 - 350.

MacDonald C. Focusing Polycapillary Optics and Their Applications // X-Ray Optics and Instrumentation, 2010, 17 pp.

Grieken R. E., Markowicz A. A. (ed.), "Handbook of X-Ray Spectrometry", Second Edition Revised and Expanded, Marcel Dekker, Inc. 2002, New York, Basel.

Published
2019-08-14
Cited
How to Cite
Vershynskyi, S., Buhay, O., Zakharets, M., Denysenko, V., & Storizhko, V. (2019). X-Ray Quasi-Monochromatic Source Based on Electrostatic Proton Accelerator. East European Journal of Physics, (1001(2), 81-88. Retrieved from https://periodicals.karazin.ua/eejp/article/view/13821