Effects of Gamma-Activation and Functionality Characteristics of Superdispersed ZrO2 –Catalystes in Methanol Conversion

  • Ivan Fedorets V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0001-7221-3134
  • Nina Khlapova V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-2591-4904
  • Mykola Dikiy National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine https://orcid.org/0000-0002-1289-625X
  • Elena Medvedeva National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine https://orcid.org/0000-0001-9024-6327
  • Dmitrij Medvedev National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
  • Vyacheslav Uvarov National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
  • D. Bakay National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
Keywords: nanopowder ZrO2, electron accelerator, gamma-activation, X-ray diffractometry, methanol conversion


On the example of a model system the methanol conversion influence of effects of γ-activation of nano ZrO2-catalystes is investigated on their functional characteristics in the processes of heterogeneous catalysis. Influence  of γ-activation nanopowder ZrO2 on direction and reaction yield was controled up on the series of experiments at room temperature with nominally clean ZrO2 and with ZrO2 with addition of nano-Fe2O (~3%) in their initial and  the γ-activated state. Activating of samples was carried out by bremsstrahlung on high-current electronic accelerator in NSC KIPT at energy of electrons 22 MeV and a current 500 μA. The features of structural transformations in  γ-activated ZrO2 were researched the method of X-ray diffractometry. It was shown that in the structure of ZrO2 no essential changes and  γ-activated particles of oxide keep monophase state and crystallinity of the initial state. Catalytic activity of ZrO2 and ZrO2/Fe2O3 before and after their γ-activated was estimated on  the absorbency of products of convertion reaction of methanol on the spectrophotometer of SF-46. The found out the sharp increase of activity of ZrO2-catalystеs after their γ-activated is ascribed to synergy of factors of ionizing radiation - big ionization losses of Auger electrons near a surface ZrO2 nanoparticles from 89Zr - and influences of high-reactionary formations of  heterogeneous catalysis.


Download data is not yet available.


Gao Q. Fang X., Wu X. et al. Mesoporous zirconia nanobelts: Preparation, characterization and application in catalytical methane combustion // Microp. Mesop. Mat. -2011. – Vol. 143. – P.333-340.

Li Y., He D.H., Cheng Z.X. et al. Effect of calcium salts on isosynthesis over ZrO2 catalysts //J. Mol. Catal. A: Chem. − 2001. − Vol. 175. − P. 267-275.

Murase Y., Kato E. Role Water Varop in Crystalline Growth and Tetragonal-Monocline Phase Transformation of ZrO2 // J. Am. Ceram. Soc. − 1983. − Vol. 66. − P.196-200.

Konstantinova T.E., Danilenko I.A., Pilipenko N.P., Volkova G.K. Nanomaterials for SOFC electrolytes and anodes on the base of zirconia // Electrochem. Soc. Proc. – 2003. − Vol. 7. – P. 153-159.

Xia C.R., Cao H.Q., Wang H. et al. Sol–gel synthesis of yttria stabilized zirconia membranes through controlled hydrolysis of zirconium alkoxide // J. Membr. Sci. −1992. − Vol.162. − P. 181-188.

Lu Y., Bangsaruntip S., Wang X. et al. DNA Functionalization of Carbon Nanotubes for Ultrathin Atomic Layer Deposition of High Dielectrics for Nanotube Transistors with 60 mV/Decade Switching // J. Am. Chem. Soc. −2006. − Vol. 128. −P. 3518-3519.

Wang S.J. Crystalline zirconia oxide on silicon as alternative gate dielectrics // Appl. Phys. Lett. .−2001.− Vol. 78. − P.1604-1606.

Patra A., Friend C., Kapoor R. Upconversion in Er3+:ZrO2 Nanocrystals //J. Phys. Chem. B.−2002.− Vol. 106. − P.1909-1912.

Mikhaylov M.M., Neshchimenko V.V., Skripka N.G. et al. Оптические свойства и радиационная стойкость порошков диоксида циркония, модифицированных редкоземельными элементами [Optical properties and radiation resistance of rare earth modified zirconia powders], Перспективные материалы [Promising materials], 3, 14-20 (2010). (in Rusian)

Wang F. Banerjee D., Liu Y. et al. Upconversion nanoparticles in biological labeling, imaging, and therapy // Analyst − 2010. − Vol. 135. − P. 1839-1854.

Hino M., Arata K. Synthesis of Solid Superacid of Tungsten Oxide Supported Zirconia and Its Catalytic Action of Reactions of Butane and Pentane // Chem. Commun. − 1998. − Vol.18. − P.1259-1260.

Jason L.B., Alexis T.B. Mechanistic Studies of Methanol Oxidation to Formaldehyde on Isolated Vanadate Sites Supported on High Surface Area Zirconia // J. Phys. Chem. C. − 2008. − Vol. 112. − P. 6404-6412.

Iglesia E., Soled S.L., Kramer G.M. Isomerization of Alkanes on Sulfated Zirconia: Promotion by Pt and by Adamantyl Hydride Transfer Species // J. Catal. −1993. − Vol. 144. −P.238-253.

Refaat A.A. Biodiesel production using solid metal oxide catalysts // Int. J. Environ. Sci. Tech.−2011.− Vol. 8. −P. 203-221.

Kalinovich D.F., Kuznetsova L.I., Denisenko E.T. Диоксид циркония: свойства и применение [Zirconium dioxide: properties and applications], Порошковая металлургия [Powder Metallurgy], 11, 98-103 (1987). (In Russian)

Zavodinskiy V.G., Chibisov A.N. О стабильности кубического диоксида циркония и стехиометрических наночастиц диоксида циркония [On the stability of cubic zirconia and stoichiometric zirconia nanoparticles], Физика твердого тела [Solid state physics], 48(2), 343-347 (2006). (in Russian)

Cao H.Q., Qiu X.Q., Luo B., Y. et al. Synthesis and Room-Temperature Ultraviolet Photoluminescence Properties of Zirconia Nanowires. //Adv. Funct. Mater. −2004. −Vol. 14. − P. 243-246.

Gracia F., Wolf E.E.. Monte Carlo simulations of the effect of crystallite size on the activity of a supported catalyst // Chem. Eng. Jour.- 2001.-Vol. 82.- P. 291-301.

Hsu C., Heimbuch C., Armes C.T et al. A Highly Active Solid Superacid Catalyst for n-Butane Isomerization: A Sulfated Oxide Containing Iron, Manganese and Zirconium // J. Chem. Soc., Chem. Commun. −1992. − Issue 22. − P. 1645 - 1646.

Tanabe K. Surface and catalytic properties of ZrO2 // Mat. Chem. Phys. – 1985. – Vol. 3. – Р. 747-764.

Sinev M.Yu. Free radicals in catalytic oxidation of light alkanes: Kinetic and thermo-chemical aspects // J. Catal. – 2003. - Vol. 216 (1-2). - Р. 468-476.

Mouaddib N., Feumi-Jantou C., Garbbowski E. et al. Catalytic oxidation of methane over palladium supported on alumina: Influence of the oxygen-to-methane ratio // Appl. Catal. A. − 1992.− Vol. 87. − P.129-144.

Marti P.E., Maciejewski M., Baiker A. Methane combustion over LaO.8SrO.2MnO3+x supported on MAl2O4 (M = Mg, Ni and Co) spinels // Appl. Catal. B − 1994. − Vol. 4. − P. 225-235.

Choudhary V.R., Uphade B.S., Pataskar S.G et al. Low-Temperature Complete Combustion of Methane over Mn-, Co-, and Fe-Stabilized ZrO2 // Angew. Chem. Int. Ed. − 1996. − Vol. 35. − P.2393-2395.

Cimino S., Colonna S., Rossi S. et al. Methane Combustion and CO Oxidation on Zirconia-Supported La, Mn Oxides and LaMnO3 Perovskite // J. Catal. − 2002. − Vol. 205. − P.309-317.

Saad L., Riad M. Characterization of various zinc oxide catalysts and their activity in the dehydration-dehydrogenation of isobutanol // J. Serb. Chem. Soc. – 2008. − Vol. 73(6). − P.997-1009.

Iglesia E., Soled S., Kramer G. Isomerization of Alkanes on Sulfated Zirconia: Promotion by Pt and by Adamantyl Hydride Transfer Species // J. Catal. −1993. − Vol. 144. − P. 238-253.

Huang F., Chen D., Zhou J. et al. Modifying the phase and controlling the size of monodisperse ZrO2 nanocrystals by employing Gd3+ as a nucleation agent // Cryst. Eng.Comm. −2011. − Vol. 13. − P. 4500-4502.

Sudhakar C., Rao V. and Kuriacose J. Influence of Irradiation on the Catalitic Properties of zinc oxide // Radiat. Phys. Chem. . −1982. − Vol. 19. − P. 101-105.

Zhang S., Zu Y., Fu Y. et al. Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst // Bioresour. Tech. − 2010. − Vol. 101. − P. 931-936.

Koberg M., Abu-Much R., Gedanken A. Optimization of bio-diesel production from soybean and wastes of cooked oil: Combining dielectric microwave irradiation and a SrO catalyst // Bioresour. Tech. − 2010. − Vol. 99. − P. 3439-3443.

Hsiao M., Lin C., Chang Y. et al. Ultrasonic mixing and closed microwave irradiation-assisted transesterification of soybean oil // Fuel. − 2009. − Vol. 89. − P. 3618-3622.

Kumar D., Kumar G., Poonam С. et al. Ultrasonic-assisted transesterification of Jatropha curcus oil using solid catalyst, Na/SiO2 // Ultrasonics Sonochemistry. −2010. − Vol. 17. − P. 839-844.

Klug H.P., Alexander L.E. X-ray Diffraction Procedures For Polycrystalline and Amorphous Materials.– New York, 1974.– 665p.

Forster H. UV/VIS Spectroscopy // Mol. Sieves. – 2004. – Vol.4. – Р. 337-426.

0 article
How to Cite
Fedorets, I., Khlapova, N., Dikiy, M., Medvedeva, E., Medvedev, D., Uvarov, V., & Bakay, D. (2012). Effects of Gamma-Activation and Functionality Characteristics of Superdispersed ZrO2 –Catalystes in Methanol Conversion. East European Journal of Physics, (1025(4), 77-84. Retrieved from https://periodicals.karazin.ua/eejp/article/view/13673