High Current Plasma Accelerators: Physics and Applications

  • Igor Garkusha Institute of Plasma Physics of the National Science Center “Kharkov Institute of Physics and Technology, Kharkiv, Ukraine https://orcid.org/0000-0001-6538-6862
Keywords: plasma accelerator, high-energy streams of dense plasma, plasma-surface interaction

Abstract

In this review paper, basic principles of high current plasma accelerators, history and recent state of their investigations in IPP NSC KIPT are briefly described. In such devices an internal magnetic field is created by high current up to several MA in the discharge and it is used for both plasma flow acceleration up to 1000 km/s. Particular attention is paid to the quasi-stationary plasma accelerators (QSPA), where discharge duration exceeds considerable the plasma flight time in acceleration channel. Application of QSPA for plasma-surface interaction studies relevant to thermonuclear reactors, like ITER and DEMO, is discussed. Results on surface modification and improvement of material properties by powerful pulsed plasma processing are described. Potential technological applications for materials treatment are emphasized.

Downloads

Download data is not yet available.

References

Encyclopedia of Low Temperature Plasma. – Vol. III / Ed. V.E. Fortov. – Moscow: Nauka, 2000.

Fizika i Primenenie Plazmennyh Uskoritelej. – Minsk: Nauka i Tekn, 1974. (in Russian).

Morozov A.I., Solov'yov L.S. Stationary plasma streams in a magnetic field // Voprosy Teorii Plazmy. – 1974. - Vol.8. - P.3-87. (in Russian).

Morozov A.I. Principles of quasistationary plasma accelerators (QSPA) // Sov. J. Plasma Phys. – 1990. - Vol.16 (2). - P. 48.

Tereshin V.I. et al. Investigation of powerful quasi-stationary coaxial plasma accelerators with rod electrodes. In book: Ionnye Inzhektory i Plasmennye Uskoriteli. – Moscow: Energoatomizdat, 1989. - P.106-123. (in Russian).

Voloshko A.Yu. et al. Study of two-stage quasistationary plasma accelerator (QSPA) with rod electrodes // Sov. J. Plasma Phys. – 1990. - Vol.16 (2). - P.85-91.

Voloshko A.Yu. et al. Investigation of the local parameters of plasma flow in a two-stage QSPA P-50 //Sov. J. Plasma Phys. - 1990. - Vol.16 (2). - P.91-95.

Kulik N.V. et al. Main characteristics of a high-power full scale quasi-stationary plasma accelerator QSPA Kh-50 and some results of preliminary experiments / 18th European Conference on Controlled Fusion and Plasma Phys. - 1991, Contributed papers, part III. - P.41-44.

Morozov A.I. et al. QSPA Kh-50 full scale high power quasistationary plasma accelerator // Plasma Devices and Operations. – 1992. - Vol.2. - P.155-165.

Tereshin V.I. Quasi-stationary plasma accelerators ant their applications // Plasma Phys. Contr. Fus. – 1995. - Vol.37. - P.A177-A190.

Tereshin V.I. et al. Powerful Quasi-Steady-State Plasma Accelerator for Fusion Experiments // Brazilian Journal of Physics. - 2002. - Vol.32, №1. - P.165-171.

Volkov Ya.F.et al. Investigation of plasma in cathode transformer of QSPA P-50 // Sov. J. Plasma Phys. - 1992. - Vol.18 (11). - P.718-723.

Arkhipov N.I. et al. Material erosion and erosion products in disruption simulation experiments at the MK-200 UG facility // Fus. Eng. and Design. – 2000. –Vol. 49-50. – P.151.

Chebotarev V.V., Garkusha I.E., Garkusha V.V. et.al. Characteristics of the transient plasma layers produced by irradiation of grap-hite targets by high power quasi-stationary plasma streams under the disruption modeling experiments // J. Nucl. Mater. - 1996. - Vol.233-237. - P.736-740.

Federici G. et al. Assessment of erosion of the ITER divertor targets during type I ELMs // Plasma Phys. Control. Fusion. – 2003. – Vol.45. – P. 1523.

Loarte A. et al. Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER // Plasma Phys. Control. Fusion. – 2003. – Vol.45. – P.1549.

Tereshin V.I., Garkusha I.E., Bandura A.N. et.al. Influence of plasma pressure gradient on melt layer macroscopic erosion of metal targets in disruption simulation experiments // J. Nucl. Mater. - 2003. - Vol.313-316. - P.686-690.

Hirai T., et al. Cracking failure study of ITER-reference tungsten grade under single pulse thermal shock loads at elevated temperatures // Journ. Nucl. Mater. – 2009. - Vol. 390–391. - P. 751–754.

Garkusha I.E. et al. Latest Results from ELM-simulation Experiments in Plasma Accelerators // Physica Scripta. – 2009. - Vol.138. – P.014054.

Garkusha I.E. et al. Damage to Preheated Tungsten Targets after Multiple Plasma Impacts Simulating ITER ELMs // Journ. Nucl. Mater. – 2009. - Vol.386-388. - P.127-131.

Shoshin A.A. et al. Plasma-Surface Interaction During ITER Type 1 ELMs: Comparison of Simulation with QSPA KH-50 and the GOL-3 Facilities // Fusion Sci. and Techn. – 2011. - Vol.59, №1. - P.57-60.

Ladygina M.S. et al. Spectroscopy of Plasma Surface Interaction in Experiments Simulating ITER Transient Events // Fusion Sci. and Techn. – 2011. - Vol.60, №1T. - P.27-33.

Garkusha I.E., et. al. Properties of modified surface layers of industrial steels samples processed by pulsed plasma streams // Vacuum. – 2000. - Vol. 58. - P.195.

Tereshin V.I., et. al. Pulsed plasma accelerators of different gas ions for surface modification // Review of Scientific Instruments. – 2002. - Vol.73. - P. 831.

Uglov V.V., et. al. Formation of alloying layers in a carbon steel by compression plasma flows //Vacuum. – 2007. - Vol. 81. - P.1341.

Tereshin V.I., et.al. Coating deposition and surface modification under combined plasma processing // Vacuum. – 2004. - Vol.73. - P.555.

Langner J. et al. Surface modification of constructional steels by irradiation with high intensity pulsed nitrogen plasma beams // Surface and Coatings Technology. – 2000. – Vol.128-129. - P.105-111.

Makhlay V.A., et al. Features of materials alloying under exposures to pulsed plasma streams // European Physical Journal D. – 2009. – Vol.54. - P.185-188.

Byrka O.V., et al. Application of pulsed plasma streams for surface modification of constructional materials // Acta Technica. – 2011. - Vol.56. – P. Т362-Т372.

Bandura A.N., et al. Alloying and Modification of Structural Materials under Pulsed Plasma Treatment // International Journal of Plasma Environmental Science & Technology. – 2011. - Vol.5, №1. - P.2-6.

Published
2013-01-25
Cited
How to Cite
Garkusha, I. (2013). High Current Plasma Accelerators: Physics and Applications. East European Journal of Physics, (1040(1), 28-39. Retrieved from https://periodicals.karazin.ua/eejp/article/view/13557