Effect of the flat electrode diameter on the ignition and burning of DC discharge
Abstract
This paper studied the effect of electrode diameter (55 mm, 25 mm, 12 mm, 5 mm, 2.4 mm and 0.8mm) on the ignition of the discharge in nitrogen and its modes of burning at a distance between electrodes 25 mm. The decrease in the electrode diameter was found at large gas pressures to discharge ignition at lesser voltages than for large size electrodes and at low gas pressures to the shift of breakdown curves to higher breakdown voltages. We revealed that all breakdown curves we had registered intersected at the nitrogen gas pressure value of p » 0.9 Torr close to the inflection point of the breakdown curves for large electrodes. To the left of the inflection point the distortion of the uniform distribution of the electric field between the electrodes of moderate diameter impedes the ionization multiplication within the discharge gap and the breakdown voltage grows, and to the right of the inflection point the conditions for gas breakdown became easier to meet due to the redistribution of the electric field. We found that the expanding discharge spot quickly covered all surface of moderate size electrodes, therefore the normal mode might be observed within a narrowing range of discharge current, whereas the decrease in the electrode diameter lowered the growth rate of the discharge current with the voltage increasing. We employed the dogleg feature of the current-voltage characteristics to determine the ratio of the normal current density to the gas pressure squared for different electrode diameter and gas pressure values to be about (J/p2)n » 0.233 mA/(cm·Torr)2 what was in good agreement with the results of other authors.
Downloads
References
Katsnelson B.V., Kalugin A.M., Larionov A.S. Electric vacuum electron and ion devices. - Moscow: Energy, 1976. - 920p.
Raizer Yu.P. Gas Discharge Physics. - Berlin: Springer, 1991. - 449 p.
Granovskiy V.L. Electric Current in a Gas. Steady-State Current. - Moscow: Nauka, 1971. - 490 p.
Vlasov V.V., Gyseva L.G., Klarfeld B.N. Transition of one type glow discharge into another // Oxford Contrib. Papers, 10th ICPIG. - 1971. – P. 98.
Lisovsky V.A., Yakovin S.D. Scaling Law for a Low-Pressure Gas Breakdown in a Homogeneous DC Electric Field // JETP Letters. - 2000. - Vol. 72, № 2. - P. 34–37.
Chistyakov P.N. Scaling laws in the normal glow discharge in neon and argon // Zhurn. Tekhn. Fiz. - 1971. - Vol. 41, № 8. - P. 1672-1674.
Korolev Yu.D. Interpretation of the phenomenon of constancy of the current density in the normal glow discharge// Sov. Phys. Tech. Phys. - 1987. - Vol.32, №2. - P. 231-233.
Fujii K. Transition mechanism from Townsend discharge to normal glow discharge // J. Appl. Phys. – 1973. - Vol. 13, № 3. - P. 573-574.
Ward A. Calculations of Cathode-Fall Characteristics // J. Appl. Phys. – 1962. - Vol. 33, № 9. – P. 2789-2796.
Cicala G., Tommaso E., Raino A.S., Lebedev Yu. A., Shakhatov V.A. Study of positive column of glow discharge in nitrogen by optical emission spectroscopy and numerical simulation // Plasma Sourses Sci. Technol. – 2009. – Vol. 18, №2. – P. 025032.
Nemchinsky V. A. Method to decrease the normal current density at the cathode of a glow discharge // J. Phys. D: Appl. Phys. - 1993. - Vol. 26, № 4. – P. 643-646.
Chistyakov P.N. Some dependencies of the normal cathode fall in inert gases // Zhurn. Tekhn. Fiz. – 1970. - Vol. 40, № 2. - P. 303-304.
Tran N., Marode E. Monte Carlo simulation of electrons within the cathode fall of a glow discharge in helium // Journal of Physics D: Applied Physics. – 1977. - Vol. 10, №16. – P. 2317-2328.
Kulikovsky A.A. Hydrodynamic description of electron multiplication in the cathode region: elementary beams model // J. Phys. D: Appl. Phys. - 1991. – Vol. 24, № 11. – P. 1954-1963.
Ward A. Effect of space charge in cold-cathode gas discharges // Phys. Rev. – 1958. - Vol. 112, № 6. – P. 1852-1857.
Guntherschulze A. Zusammenhang zwischen stromdichte und kathodenfall der Glimmentladung bei verwendung einer schutzringkathode und korrektion der temperaturerhohung des gases // Mitteilung aus der Physikalisch - Technischen Reichsanstalt. - 1928. – Vol.26. – P. 358-379.
Melekhin V.N., Naumov N.Yu. On the nature of the cathode spot of a normal glow discharge// Sov. Tech. Phys. Lett. 1986. - Vol. 12, № 2. - P. 41-44.
Raizer Yu.P., Surzhikov S.T. More on the nature of the normal current density at the cathode of a glow discharge // Sov. Tech. Phys. Lett. 1987. - Vol.13, №3. - P. 186-188.
Petrovic Z.Lj., Phelps A.V. Constrictions in cathode-dominated, low-pressure argon discharges // IEEE Trans. Plasma Science – 1996. - Vol. 24, №1. – P. 107-108.
Petrovic Z.Lj., Donko Z., Maric D., Malovic G., Živanov S. CCD images of low-pressure low-current dc discharges // IEEE Trans. Plasma Science – 2002. - Vol. 30, № 1. – P. 136-137.
Engel A., Emeleus K.G., Kennedy M. Radial coherence of the normal glow discharge // Physics Letters A. – 1972. - Vol.42, №3. – P. 191-192.
Boeuf J.-P. A two-dimensional model of dc glow discharges // J. Appl. Phys. – 1988. - Vol. 63, № 5. - P. 1342-1349.
Ohuchi M., Kubota T. Monte Carlo simulation of electrons in the cathode region of the glow discharge in helium // Journal of Physics D: Applied Physics. – 1983. - Vol. 16, № 9. – P. 1705-1714.
Hartog E.A., Dought D.A. Laser optogalvanic and fluorescence studies of the cathode region of a glow discharge // Phys. Rev. – 1988. - Vol.38, № 9. – P. 2471-2474.
Goto M., Kondon Y. Monte Carlo simulation of normal and abnormal glow discharge plasmas using the limited weight probability method // Jpn. J. Appl. Phys. – 1998. – Vol. 37, № 1. – P. 308-312.
Kudryavtsev A.A., Tsendin L.D. Townsend Discharge Instability on the Right-Hand Branch of the Paschen Curve // Tech. Phys. Lett. - 2002. - Vol.28, №12. - P. 1036-1039.
Kudryavtsev A.A., Morin A.V., Tsendin L.D. Role of nonlocal ionization in formation of the short glow discharge // Technical Physics. - 2008. - Vol.53, № 8. - P. 1029-1040.
Moizhes B.Ya., Nemchinskii V.A. On the theory of the cathode layer glow // Zhurn. Tekhn. Fiz. – 1989. – Vol. 59, № 4. – P. 22-29.
Lister G. Low – pressure gas discharge modeling // J. Phys. D: Appl. Phys. – 1992. – Vol. 25, №12. - P.1649-1680.
Guntherschulze A. Die behinderte Glimmentladung. II. // Z. Physik. – 1930. - Vol.61. - P.581-586.
Lisovskiy V.A., Koval V.A., Yegorenkov V.D. Dc breakdown of low pressure gas in long tubes // Physics Letters A. – 2011. – Vol. 375. – №19. – P.1986-1989.
Lisovskiy V.A., Yakovin S.D., Yegorenkov V.D. Low-pressure gas breakdown in uniform dc electric field // J. Phys. D: Appl. Phys. - 2000. - Vol. 33, № 21. - P. 2722-2730.
Lisovsky V.A., Yakovin S.D. Scaling Law for a Low-Pressure Gas Breakdown in a Homogeneous DC Electric Field // JETP Letters. - 2000. -Vol. 72, № 2. - P.34–37.
Penning F.M. Zweierlei negative Charakteristiken bei selbstandigen Gasentladungen // Physik. Zeitschr. – 1932. - Vol.33. - P. 816-822.
Francis G. The glow discharge at low pressure // Encyclopedia of physics. - 1956. - Vol.22. - P. 53-208.
Doughty D.K., Lawler J.E. Optogalvanic effects in the obstructed glow discharge // Appl. Phys. Lett. – 1983. - Vol.43, № 3. - P.234-236.
Ganguly B.N., Garscadden A. Electric field and Doppler emission profile measurements in an obstructed hydrogen discharge // J. Appl. Phys. – 1991. - Vol.70, № 2. - P.621-627.
Donko Z., Rozsa K., Tobin R.C., Peard K.A. Modeling and measurements on an obstructed glow discharge in helium // Phys. Rev. E. – 1994. - Vol.49, № 4. - P.3283-3289.
Fukao M., Ishida M., Ohtsuka Y., Matsuo H. A simple electron gun by obstructed discharge and its discharge - sustaining mechanism // Vacuum. – 2000. - Vol.59, №1. - P.358-372.
Lisovskiy V.A., Kharchenko N.D. Normal mode of the longitudinal combined discharge in low pressure nitrogen // The Journal of Kharkiv National University, physical series: Nuclei, Particles, Fields. – 2010. – Vol. 889, №2/46/. - P. 74-82.
Lisovskiy V.A., Yakovin S.D. Cathode Layer Characteristics of a Low-Pressure Glow Discharge in Argon and Nitrogen // Technical Physics Letters. - 2000. - Vol. 26, № 10. - P. 891–893.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).