TRANSFORMER RATIO DEPENDENCE ON BUNCH LENGTH AT NON-LINEAR WAKEFIELD EXCITATION IN PLASMA BY ELECTRON BUNCH WITH GAUSSIAN CHARGE DISTRIBUTION

  • D. S. Bondar Karazin Kharkiv National University 61022, Kharkov, Ukraine https://orcid.org/0000-0002-7358-4305
  • I. P. Levchuk NSC Kharkov Institute of Physics & Technology 61108 Kharkov, Ukraine https://orcid.org/0000-0003-0542-0410
  • V. I. Maslov NSC Kharkov Institute of Physics & Technology 61108 Kharkov; Ukraine Karazin Kharkiv National University 61022, Kharkov, Ukraine https://orcid.org/0000-0002-4370-7685
  • I. N. Onishchenko NSC Kharkov Institute of Physics & Technology 61108 Kharkov, Ukraine
Keywords: transformer ratio, plasma wakefield, bubble, blowout, wakefield acceleration

Abstract

Using 2d3v code LCODE, the numerical simulation of nonlinear wakefield excitation in plasma by shaped relativistic electron bunch with charge distribution, which increases according to Gaussian charge distribution up to the maximum value, and then decreases sharply to zero, has been performed. Transformer ratio, as the ratio of the maximum accelerating field to the maximum decelerating field inside the bunch, and accelerating the wakefield have been investigated taking into account nonlinearity of the wakefield. The dependence of the transformer ratio and the maximum accelerating field on the length of the bunch was investigated with a constant charge of the bunch. It was taken into account that the length of the nonlinear wakefield increases with increasing length of the bunch. It is shown that the transformer ratio reaches its maximum value for a certain length of the bunch. The maximum value of the transformer ratio reaches six as due to the profiling of the bunch, and due to the non-linearity of the wakefield.

Downloads

Download data is not yet available.

References

1. Leemans W.P., Gonsalves A.J., Mao H.-S. et al. Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime // Phys. Rev. Lett. - 2014. - Vol. 113. - P. 245002.

2. Pukhov A., Meyer-ter-Vehn J. Laser wake field acceleration: the highly non-linear broken-wave regime // Applied Physics B. – 2002. – Vol.74. – P. 355-361.

3. Leemans W. P., Nagler B., Gonsalves A. J., Tóth Cs., Nakamura K., Geddes C.G.R., Esarey E., Schroeder C. B., Hooker S.M. GeV electron beams from a centimetre-scale accelerator // Nature Physics. - 2006. - Vol. 2. - P. 696-699.

4. Malka V. Laser plasma accelerators // Phys. of Plasmas. - 2012. - Vol. 19. - P.055501.

5. Hooker S.M., Bartolini R., Mangles S.P.D., Tünnermann A., Corner L., Limpert J., Seryi A., Walczak R. Multi-pulse laser wakefield acceleration: a new route to efficient, high-repetition-rate plasma accelerators and high flux radiation sources // Special Issue of J. Phys. B. - 2014. - Vol. 47. - P 234003.

6. Lotov K.V., Maslov V.I., Onishchenko I.N., Svistun E. Resonant excitation of plasma wakefields by a nonresonant train of short electron bunches // Plasma Phys. Control. Fusion. - 2010. - Vol.52. - No.6. - P. 065009.

7. Jing C., Power J., Zholents A. Dielectric Wakefield Accelerator to Drive the Future FEL Light Source // ANL/APS/LS- 326. - 2011.

8. Maslov V.I., Onishchenko I.N., Yarovaya I.P. Transformer ratio at excitation of nonlinear wakefield in plasma by shaped sequence of electron bunches with linear growth of charge // VANT. – 2012. - Vol.4.-No.80 - P.128-130.

9. Baturin S. S., Zholents A. Upper limit for the accelerating gradient in the collinear wakefield accelerator as a function of the transformer ratio // Phys. Rev. ST Accel. Beams. - 2017. – Vol.20. – P.061302.
10. Tajima T. Laser acceleration in novel media // Eur. Phys. J. Special Topics. - 2014. – Vol. 223. – No.6. – P. 1037–1044.

11. Massimo F., Marocchino A., Ferrario M., Mostacci A., Musumeci P., Palumbo L. Transformer ratio studies for single bunch plasma wakefield acceleration // Nucl. Inst. and Meth. A. – 2014. – Vol.740. – P.242-245.

12. Jing C., Power J.G., Conde M., Liu W., Yusof Z., Kanareykin A., Gai W. Increasing the transformer ratio at the Argonne wakefield accelerator // Phys. Rev. ST Accel. Beams. – 2011. – Vol. 14. – P. 021302.

13. Wilson P.B. Wake Field Accelerators // Invited talk presented at the SLAC Summer Institute on Particle Physics, Stanford, California. - 1985. – P.1-45.

14. Chen P., Spitkovsky A., Katsouleas T., Mori W.B. Transformer ratio and pulse shaping in laser wakefield accelerator // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1998. – Vol. 410. – No.3. - P. 488-492.

15. Spitkovsky A., Chen P. Longitudinal laser shaping in laser wakefield accelerators // Phys. Lett. A. – 2002. – Vol. 296. – No.2. – P. 125-130.

16. Leemans W.P., Catravas P., Esarey E., Geddes C.G.R., Toth C., Trines R., Schroeder C.B., Shadwick B.A., Tilborg van J., Faure J. Electron-Yield Enhancement in a Laser-Wakefield Accelerator Driven by Asymmetric Laser Pulses // Phys. Rev. Lett. - 2002. - Vol. 89. - No. 17. - P. 174802.

17. Maslov V.I., Onishchenko I.N., Yarovaya I.P. Transformation Ratio at Excitation of Nonlinear Wakefield in Plasma by Shaped Sequence of Electron Bunches with Linear Growth of Charge // Problems of Atomic Science and Technology. - 2012. – Vol.4. – No. 80. – P.128-130.

18. Jiang B., Jing C., Schoessow P., Power J., Gai W. Formation of a novel shaped bunch to enhance transformer ratio in collinear wakefield accelerators // Phys. Rev. ST Accel. Beams 15. – 2012. – P. 011301.
19. Maslov V.I., Onishchenko I.N., Yarovaya I.P. Wakefield Excitation in Plasma by Sequence of Shaped Electron Bunches // Problems of Atomic Science and Technology. Ser. Plasma Physics. - 2012. – No.6. – P. 161-163.

20. Lemery F., Piot P. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration // Phys. Rev. ST Accel. Beams 18. – 2015. – P. 081301.

21. Maslov V.I., Onishchenko I.N. Transformation Ratio at Wakefield Excitation in Dielectric Resonator by Shaped Sequence of Electron Bunches with Linear Growth of Current // Problems of Atomic Science and Technology. Problems of Atomic Science and Technology. - 2013. – Vol.4. – No.86. - P. 69-72.

22. Altmark A.M., Kanareykin A.D. Annular Cherenkov high gradient wakefield accelerator: beam-breakup analysis and energy transfer efficiency // Journal of Physics: Conference Series. – 2012. - Vol.357. – P.012001.

23. Maslov V.I., Onishchenko I.N. Transformation Ratio at Wakefield Acceleration in Dielectric Resonator // Problems of Atomic Science and Technology. Ser. Nuclear Physics Investigations. - 2014. – Vol.3. - P. 99-101.

24. Balakirev V.A., Onishchenko I.N., Sotnikov G.V., Fainberg Ya.B., Charged particle acceleration in plasma by wakefield of shaped train of relativistic electron bunches // Sov. Plasma Phys. – 1996. – Vol. 22. – No.2. – P.157-164.

25. Maslov V.I., Onishchenko I.N. Transformation Ratio at Wakefield Excitation in Dielectric Resonator by Sequence of Rectangular Electron Bunches with Linear Growth of Charge // Problems of Atomic Science and Technology. Ser. Nuclear Physics Investigations. - 2014. – No.3. - P.95-98.

26. Nakajima K. Plasma Wake-field Accelerator Driven by a Train of Multiple Bunches // Particle Accelerators. 1990. – Vol.32. - P.209-214.

27. Maslov V.I., Svistun O.M. Transformation Ratio at Plasma Wakefield Excitation by Laser Pulse with Ramping of its Intensity according to Cosine // East Eur. J. Phys. - 2014. - Vol.1. – No.4. - P. 84-87.

28. Kazakov S.Yu., Kuzikov S.V., Jiang Y., Hirshfield L. High-gradient two-beam accelerator structure // Phys. Rev. ST Accel. Beams. – 2010. – Vol. 13. – P. 071303.

29. Levchuk I.P., Maslov V.I., Onishchenko I.N. Transformation Ratio at Wakefield Excitation by Linearly Shaped Sequence of Short Relativistic Electron Bunches // Problems of Atomic Science and Technology. - 2015. – No.6. - P. 37-41
Published
2018-06-05
How to Cite
Bondar, D., Levchuk, I., Maslov, V., & Onishchenko, I. (2018). TRANSFORMER RATIO DEPENDENCE ON BUNCH LENGTH AT NON-LINEAR WAKEFIELD EXCITATION IN PLASMA BY ELECTRON BUNCH WITH GAUSSIAN CHARGE DISTRIBUTION. East European Journal of Physics, 5(2), 72-77. https://doi.org/10.26565/2312-4334-2018-2-10