A NEW SYMMETRY OF ELECTROWEAK LAGRANGIAN

  • K. K. Merkotan Odessa National Polytechnic University 1, Shevchenko Ave., Odessa, 65044, Ukraine https://orcid.org/0000-0001-7202-6857
  • T. M. Zelentsova Odessa National Polytechnic University 1, Shevchenko Ave., Odessa, 65044, Ukraine https://orcid.org/0000-0002-2884-0090
  • N. O. Chudak Odessa National Polytechnic University 1, Shevchenko Ave., Odessa, 65044, Ukraine https://orcid.org/0000-0002-8940-8103
  • D. A. Ptashynskiy Odessa National Polytechnic University 1, Shevchenko Ave., Odessa, 65044, Ukraine
  • V. V. Urbanevich Odessa National Polytechnic University 1, Shevchenko Ave., Odessa, 65044, Ukraine https://orcid.org/0000-0002-1858-4708
  • O. S. Potiienko Odessa National Polytechnic University 1, Shevchenko Ave., Odessa, 65044, Ukraine https://orcid.org/0000-0002-0952-2281
  • V. V. Voitenko Odessa National Polytechnic University 1, Shevchenko Ave., Odessa, 65044, Ukraine https://orcid.org/0000-0002-0321-7796
  • O. D. Berezovskyi Odessa National Polytechnic University 1, Shevchenko Ave., Odessa, 65044, Ukraine
  • I. V. Sharph Odessa National Polytechnic University 1, Shevchenko Ave., Odessa, 65044, Ukraine https://orcid.org/0000-0002-4949-5169
  • V. D. Rusov Odessa National Polytechnic University 1, Shevchenko Ave., Odessa, 65044, Ukraine https://orcid.org/0000-0003-1091-1396
Keywords: non-Abelian gauge fields, electroweak interaction, Standard Model, local U(1) – symmetry of SU(2) group generators, W and Z – bosons.

Abstract

Problems of the Standard Model, associated with the introduction of an electromagnetic field as a linear combination of fields on which various gauge groups representations are implemented, are analyzed. In this paper, we pay attention to the fact that in any model with gauge fields, the generators which are included in the covariant derivatives can be given only up to the transition to the equivalent representation. It is proposed that dynamic models with equivalent representations of generators should be physically equivalent. It means the requirement of the Lagrangian symmetry with respect to the transition from one equivalent generators representations to another. In particular, in the Lagrangian of the Standard Model, we have raising and lowering SU (2) group generators. The group multiplication law determines only the matrix elements modules of these generators while the arguments remain uncertain. In the paper, such uncertainty is considered as a local one. At different points of space-time, generators can be expressed in various equivalent representations. The compensation of the uncertain matrix elements arguments of the SU (2) group generators can be carried out with a local U (1) - transformation with the introduction of the corresponding gauge field, which can be considered as the electromagnetic field. The advantages of such electromagnetic field introduction in comparison with the method used in the Standard Model are analyzed.

Downloads

Download data is not yet available.

Author Biography

I. V. Sharph, Odessa National Polytechnic University 1, Shevchenko Ave., Odessa, 65044, Ukraine

References

Weinberg, S. A Model of Leptons // Phys. Rev. Lett. – 1967. – No. 19. – P.1264-1266. http://dx.doi.org/10.1103/PhysRevLett.19.1264

Salam A., Ward J. Electromagnetic and weak interactions // Phys. Lett. - 1964. – No. 13. – P.168-171. https://doi.org/10.1016/0031-9163(64)90711-5

Glashow S. Partial-symmetries of weak interactions // Nuclear Physics. – 1961. – No. 22. – P.579-588. https://doi.org/10.1016/0029-5582(61)90469-2

Rider L. Kvantovaja teorija polja [Quantum field theory]. – Volgograd: Platon, 1998. – 509 p. (in Russian)

Peskin M., Schroeder D. Vvedenie v kvantovuju teoriju polja [An introduction to quantum field theory]. – Izhevsk: Reguljarnaja i haoticheskaja dinamika, 2001. – 784 p. (in Russian)

Fukuda Y. et al (Super-Kamiokande Collaboration). Evidence for Oscillation of Atmospheric Neutrinos // Phys. Rev. Lett. – 1998. – No. 81. – P. 1562-1567. https://doi.org/10.1103/PhysRevLett.81.1562

Ahmad Q. et al (SNO Collaboration). Measurement of the Rate of  e  d  p  p  e Interactions Produced by 8B Solar Neutrinos at the Sudbury Neutrino Observatory // Phys. Rev. Lett. - 2001. – No. 87. – P. 071301. https://doi.org/10.1103/PhysRevLett.87.071301

Ahmad Q. et al (SNO Collaboration). Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory // Phys. Rev. Lett. – 2002. – No. 89. - P. 011301. https://doi.org/10.1103/PhysRevLett.89.011301

Gelfand I., Minlos R., Shapiro Z. Predstavlenija grupy vrashhenij i grupy Lorenca, ih priminenija [Representations of the Rotation and Lorentz Groups and Their Applications]. – М.: Nauka, 1958. – 367 p. (in Russian)

Inui T., Tanabe Y., Onodera Y. Group theory and its applications in physics. – Berlin: Springer-Verlag Berlin Heidelberg, 1990.– 397 p.

Elliott J., Dawber P. Simetrija v fizike, Т. 1 [Symmetry in Physics, Vol. 1]. – М.: Мir, 1983. – 368 p. (in Russian)

Zelobenko D. Kompaktnye grupy Li i ih predstavlenija [Compact Lie Groups and Their Representations]. – М.: MCNMО, 2007. – 552 p. (in Russian)

Hasert F. et al. Search for elastic muon-neutrino electron scattering // Phys. Lett. B. – 1973. – No. 46. – P. 121-124. https://doi.org/10.1016/0370-2693(73)90494-2

Hasert F. et al. Observation of neutrino-like interactions without muon or electron in the gargamelle neutrino experiment // Phys. Lett. B. – 1973. – No. 46. – P. 138-140. https://doi.org/10.1016/0370-2693(73)90499-1

Patrignani C. et al (Particle Data Group). Review of Particle Physics // Chin. Phys. C. – 2016. – No. 40. – P. 100001. DOI: 10.1088/1674-1137/40/10/100001

Salam A., Ward J. Weak and electromagnetic interactions // Il Nuovo Cimento. – 1959. – No. 11. – P. 568-577. https://doi.org/10.1007/BF02726525

Altarelli G. Collider Physics within the Standard Model. – Cham: Springer International Publishing, 2017. – 173 p.

Abbiendib G. et al (OPAL Collaboration). Measument of the WW y cross-section and first direct limits on anomalous electroweak quartic gauge couplings // Phys. Lett. B. – 1999. – No. 471. – P. 293-307. https://doi.org/10.1016/S0370- 2693(99)01357-X

Chatrchyan S. et al (CMS collaboration). Observation of a new boson with mass near 125 GeV in pp collisions at s  7 and 8 TeV // Journal of High Energy Physics. - 2013. – Vol. 6. – P. 81. https://doi.org/10.1007/JHEP06(2013)081

Aad G. et al (ATLAS Collaboration). Measurements of W and Z production in pp collisions at s  7 TeV with the ATLAS detector at the LHC // Phys. Rev. D. – 2013. – Vol. 87. – P. 112003. https://doi.org/10.1103/PhysRevD.87.112003

Chatrchyan S. et al (CMS Collaboration). Measurement of the W and Z inclusive cross sections in pp collisions at s  7 TeV and limits an anomalous triple gauge boson couplings // Phys. Rev. D. – 2014. – No. 89. – P. 092005. https://doi.org/10.1103/PhysRevD.89.092005

Chatrchyan S. et al (CMS Collaboration). Search for WW and WZ production and constrains on anomalous quartic gauge couplings in pp collisions at s  8 TeV // Phys. Rev. D. – 2014. – No. 90. – P. 032008. https://doi.org/10.1103/PhysRevD.90.032008

Szleper M. The Higgs boson at the physics of WW scattering before and after Higgs discovery // arXiv: 1412.8367 [hep-ph]. – 2014. -166 p.

Chatrchyan S. et al (CMS collaboration). Measurement of differential cross sections for the production of a pair of isolated photons in pp collisions at s  7 TeV // The European Physical Journal C. – 2014. – No. 74. – P. 3129. https://doi.org/10.1140/epjc/s10052-014-3129-3

Published
2018-06-05
Cited
0 article
How to Cite
Merkotan, K., Zelentsova, T., Chudak, N., Ptashynskiy, D., Urbanevich, V., Potiienko, O., Voitenko, V., Berezovskyi, O., Sharph, I., & Rusov, V. (2018). A NEW SYMMETRY OF ELECTROWEAK LAGRANGIAN. East European Journal of Physics, 5(2), 35-48. https://doi.org/10.26565/2312-4334-2018-2-05