Полярізаційне силове поле для молекулярно-динамічного моделювання наночастинок срібла

  • Margaret M. Blazhynska Харківський національний університет імені В.Н. Каразіна https://orcid.org/0000-0003-0749-8772
  • Alexander V. Kyrychenko Харківський національний університет імені В.Н. Каразіна https://orcid.org/0000-0002-6223-0990
  • Oleg N. Kalugin Харківський національний університет імені В.Н. Каразіна https://orcid.org/0000-0003-3273-9259
Ключові слова: срібло, наночастинки, гранецентрована кубічна ѓратка, ГЦК, поляризаційна модель, осцилятор Друде, молекулярно-динамічне моделювання

Анотація

При контакті металевих поверхонь срібла з водою, іонами та органічними лігандами виникають індуковані заряди, що призводять до поляризації. Поляризаційні сили відіграють важливу роль на неорганічних та органічних міжфазних границях і впливають на інші невалентні поверхневі взаємодії. Незважаючи на важливість цих взаємодій, до сих пір було складно реалізувати такі поляризаційні ефекти для класичного молекулярно-динамічного моделювання (МД). В першу чергу, у даній статті наведено огляд двох популярних поляризаційних моделей, такі як модель осцилятора Друде і модель жорсткого стрижня, які використовуються для відтворення поляризації об’ємних металів. По-друге, ми застосували модель жорсткого стрижня до поляризаційного силового поля (СП) для атома срібла, яке було згодом адаптовано для атомістичного моделювання наночастинок срібла (AgNP), що складаються з 1397 атомів. У нашій моделі індукована поляризація заряду представлена зміщенням віртуального сайту з зарядом, жорстко прикріпленого до звичайного атома Ag. Для дослідження ролі поляризації ми порівняли дані, отриманні з використанням класичного неполяризаційного СП та нової поляризаційної моделі, в МД моделюванні адсорбції води та іонів на квазісферичній наночастинці AgNP та плоскій кристалічній поверхні срібла. Аналіз функції радіального розподілу атомів Ag-Ag продемонстрував, що впровадження поляризаційного ефекту незначно впливає на гранецентровану кубічну ґратку атомів срібла наночастинки, що ізольована в вакуумі, та AgNP, сольватованої у воді. Ми виявили, що поляризаційне силове поле викликає деяке посилення взаємодій між поверхнею срібла і молекулами води, та іонами Na+. В якості вирішального тесту розробленої поляризаційної моделі, нами була проаналізована структура шару адсорбованих міжфазних молекул води. Наші дані свідчать про те, що обумовлена навколишнім середовищем поляризація срібної поверхні значною мірою впливає на структуру адсорбованих міжфазних шарів води, а також вона відіграє важливу роль в адсорбції позитивно заряджених іонів. Однак було також встановлено, що ефект поляризації є досить короткодіючим, тому спостерігається незначний внесок поляризації срібла в адсорбцію молекул води, і іонів із віддалених сольватних оболонок.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

Prasher P., Singh M., Mudila H. Silver nanoparticles as antimicrobial therapeutics: Current perspectives and future challenges. 3 Biotech 2018, 8 (10), art. no. 411.

Stamplecoskie K. Silver nanoparticles: From bulk material to colloidal nanoparticles. In Silver nanoparticle applications: In the fabrication and design of medical and biosensing devices, Alarcon, E. I.; Griffith, M.; Udekwu, K. I., Eds. Springer International Publishing: Cham, 2015; pp 1-12.

Prabhu S., Poulose E. K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters 2012, 2 (1), art. no. 32.

Franci G., Falanga A., Galdiero S., Palomba L., Rai M., Morelli G., Galdiero M. Silver nanoparticles as potential antibacterial agents. Molecules 2015, 20 (5), 8856-8874.

Tian P. Molecular dynamics simulations of nanoparticles. Ann Rep Sect C: Phys. Chem. 2008, 104 142-164.

Konuk M., Durukanoglu S. Shape-controlled growth of metal nanoparticles: An atomistic view. Phys. Chem. Chem. Phys. 2016, 18 (3), 1876-1885.

Fichthorn K. A., Balankura T., Qi X. Multi-scale theory and simulation of shape-selective nanocrystal growth. CrystEngComm 2016, 18 (29), 5410-5417.

Blazhynska M. M., Kyrychenko A., Kalugin O. N. Molecular dynamics simulation of the size-dependent morphological stability of cubic shape silver nanoparticles. Mol. Simul. 2018, 44 (12), 981-991.

Blazhynska M. M., Kyrychenko A. V., Kalugin O. N. Molecular dynamics simulations of silver nanoparticles of cubic and bipyramidal shape. Kharkov University Bulletin. Chemical Series. 2017, 29 (52), 23-30.

Fichthorn K. A. Atomic-scale theory and simulations for colloidal metal nanocrystal growth. J. Chem. Eng. Data 2014, 59 (10), 3113-3119.

Martin L., Bilek M. M., Weiss A. S., Kuyucak S. Force fields for simulating the interaction of surfaces with biological molecules. Interface Focus 2016, 6 (1), art. no. 20150045.

Monti S., Barcaro G., Sementa L., Carravetta V., Ågren H. Characterization of the adsorption dynamics of trisodium citrate on gold in water solution. RSC Adv. 2017, 7 (78), 49655-49663.

Kyrychenko A., Karpushina G. V., Bogatyrenko S. I., Kryshtal A. P., Doroshenko A. O. Preparation, structure, and a coarse-grained molecular dynamics model for dodecanethiol-stabilized gold nanoparticles. Comput. Theor. Chem. 2011, 977 (1–3), 34-39.

Henz B. J., Chung P. W., Andzelm J. W., Chantawansri T. L., Lenhart J. L., Beyer F. L. Determination of binding energy and solubility parameters for functionalized gold nanoparticles by molecular dynamics simulation. Langmuir 2011, 27 (12), 7836-7842.

Kyrychenko A., Karpushina G. V., Svechkarev D., Kolodezny D., Bogatyrenko S. I., Kryshtal A. P., Doroshenko A. O. Fluorescence probing of thiol-functionalized gold nanoparticles: Is alkylthiol coating of a nanoparticle as hydrophobic as expected? J. Phys. Chem. C 2012, 116 (39), 21059-21068.

Sridhar D. B., Gupta R., Rai B. Effect of surface coverage and chemistry on self-assembly of monolayer protected gold nanoparticles: A molecular dynamics simulation study. Phys. Chem. Chem. Phys. 2018, 20 (40), 25883-25891.

Pohjolainen E., Chen X., Malola S., Groenhof G., Häkkinen H. A unified AMBER-compatible molecular mechanics force field for thiolate-protected gold nanoclusters. J. Chem. Theory Comput. 2016, 12 (3), 1342-1350.

Slavgorodska M. V., Kyrychenko A. V. Binding preference of α-cyclodextrin onto gold nanoparticles. Nanosistemi, Nanomateriali, Nanotehnologii 2019, 17 (1), 133-144.

Kyrychenko A., Korsun O. M., Gubin I. I., Kovalenko S. M., Kalugin O. N. Atomistic simulations of coating of silver nanoparticles with poly(vinylpyrrolidone) oligomers: Effect of oligomer chain length. J. Phys. Chem. C 2015, 119 (14), 7888-7899.

Milano G., Santangelo G., Ragone F., Cavallo L., Di Matteo A. Gold nanoparticle/polymer interfaces: All atom structures from molecular dynamics simulations. J. Phys. Chem. C 2011, 115 (31), 15154-15163.

Shen Z., Nieh M.-P., Li Y. Decorating nanoparticle surface for targeted drug delivery: Opportunities and challenges. Polymers 2016, 8 (3), art. no. 83.

Hwang J., Shim Y., Yoon S.-M., Lee S. H., Park S.-H. Influence of polyvinylpyrrolidone (PVP) capping layer on silver nanowire networks: Theoretical and experimental studies. RSC Adv. 2016, 6 (37), 30972-30977.

Balankura T., Qi X., Zhou Y., Fichthorn K. A. Predicting kinetic nanocrystal shapes through multi-scale theory and simulation: Polyvinylpyrrolidone-mediated growth of Ag nanocrystals. J. Chem. Phys. 2016, 145 (14), art. no. 144106.

Kyrychenko A., Blazhynska M. M., Slavgorodska M. V., Kalugin O. N. Stimuli-responsive adsorption of poly(acrylic acid) onto silver nanoparticles: Role of polymer chain length and degree of ionization. J. Mol. Liq. 2019, 276, 243-254.

Ethier J. G., Hall L. M. Modeling individual and pairs of adsorbed polymer-grafted nanoparticles: Structure and entanglements. Soft Matter 2018, 14 (4), 643-652.

Kumar S. K., Ganesan V., Riggleman R. A. Perspective: Outstanding theoretical questions in polymer-nanoparticle hybrids. J Chem. Phys. 2017, 147 (2), art. no. 020901.

Shao Q., Hall C. K. Allosteric effects of gold nanoparticles on human serum albumin. Nanoscale 2017, 9 (1), 380-390.

Kyrychenko A. NANOGOLD decorated by pHLIP peptide: Comparative force field study. Phys. Chem. Chem. Phys. 2015, 17 (19), 12648-12660.

Ramezani-Dakhel H., Bedford N. M., Woehl T. J., Knecht M. R., Naik R. R., Heinz H. Nature of peptide wrapping onto metal nanoparticle catalysts and driving forces for size control. Nanoscale 2017, 9 (24), 8401-8409.

Colangelo E., Chen Q., Davidson A. M., Paramelle D., Sullivan M. B., Volk M., Lévy R. Computational and experimental investigation of the structure of peptide monolayers on gold nanoparticles. Langmuir 2017, 33 (1), 438-449.

Heinz H., Jha K. C., Luettmer-Strathmann J., Farmer B. L., Naik R. R. Polarization at metal–biomolecular interfaces in solution. J. Royal Soc. Interf. 2011, 8 (55), 220-232.

Lemkul J. A., Huang J., Roux B., MacKerell A. D. An empirical polarizable force field based on the classical drude oscillator model: Development history and recent applications. Chem. Rev. 2016, 116 (9), 4983-5013.

Ozboyaci M., Kokh D. B., Corni S., Wade R. C. Modeling and simulation of protein–surface interactions: Achievements and challenges. Quant. Rev. Biophys. 2016, 49, art. no. e4 (87 pages).

Makarucha A., Todorova N., Yarovsky I. Nanomaterials in biological environment: A review of computer modelling studies. Europ. Biophys. J. 2011, 40 (2), 103-115.

Charchar P., Christofferson A. J., Todorova N., Yarovsky I. Understanding and designing the gold–bio interface: Insights from simulations. Small 2016, 12 (18), 2395-2418.

Heinz H., Ramezani-Dakhel H. Simulations of inorganic-bioorganic interfaces to discover new materials: Insights, comparisons to experiment, challenges, and opportunities. Chem. Soc. Rev. 2016, 45 (2), 412-448.

Kyrychenko A., Pasko D. A., Kalugin O. N. Poly(vinyl alcohol) as a water protecting agent for silver nanoparticles: The role of polymer size and structure. Phys. Chem. Chem. Phys. 2017, 19 (13), 8742-8756.

Heinz H., Vaia R. A., Farmer B. L., Naik R. R. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12−6 and 9−6 Lennard-Jones potentials. J. Phys. Chem. C 2008, 112 (44), 17281-17290.

Předota M., Machesky M. L., Wesolowski D. J. Molecular origins of the Zeta potential. Langmuir 2016, 32 (40), 10189-10198.

Iori F., Corni S. Including image charge effects in the molecular dynamics simulations of molecules on metal surfaces. J. Comput. Chem. 2008, 29 (10), 1656-1666.

Iori F., Di Felice R., Molinari E., Corni S. GolP: An atomistic force-field to describe the interaction of proteins with Au(111) surfaces in water. J. Comput. Chem. 2009, 30 (9), 1465 1476.

Wright L. B., Rodger P. M., Corni S., Walsh T. R. GolP-CHARMM: First-principles based force fields for the interaction of proteins with Au(111) and Au(100). J. Chem. Theory Comput. 2013, 9 (3), 1616-1630.

Wright L. B., Rodger P. M., Walsh T. R., Corni S. First-principles-based force field for the interaction of proteins with Au(100)(5 × 1): An extension of GolP-CHARMM. J. Phys. Chem. C 2013, 117 (46), 24292-24306.

Hughes Z. E., Wright L. B., Walsh T. R. Biomolecular adsorption at aqueous silver interfaces: First-principles calculations, polarizable force-field simulations, and comparisons with gold. Langmuir 2013, 29 (43), 13217-13229.

Wright L. B., Rodger P. M., Walsh T. R. Structure and properties of citrate overlayers adsorbed at the aqueous Au(111) interface. Langmuir 2014, 30 (50), 15171-15180.

Hughes Z. E., Walsh T. R. Non-covalent adsorption of amino acid analogues on noble-metal nanoparticles: Influence of edges and vertices. Phys. Chem. Chem. Phys. 2016, 18 (26), 17525 17533.

Hughes Z. E., Walsh T. R. Distinct differences in peptide adsorption on palladium and gold: Introducing a polarizable model for Pd(111). J. Phys. Chem. C 2018, 122 (34), 19625-19638.

Perfilieva O. A., Pyshnyi D. V., Lomzov A. A. Molecular dynamics simulation of polarizable gold nanoparticles interacting with sodium citrate. J. Chem. Theory Comput. 2019, 15 (2), 1278 1292.

Heinz H., Lin T.-J., Kishore Mishra R., Emami F. S. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The interface force field. Langmuir 2013, 29 (6), 1754-1765.

Berg A., Peter C., Johnston K. Evaluation and optimization of interface force fields for water on gold surfaces. J. Chem. Theory Comput. 2017, 13 (11), 5610-5623.

Hermans J., Berendsen H. J. C., Van Gunsteren W. F., Postma J. P. M. A consistent empirical potential for water–protein interactions. Biopolymers 1984, 23 (8), 1513-1518.

Schuler L. D., Daura X., van Gunsteren W. F. An improved Gromos96 force field for aliphatic hydrocarbons in the condensed phase. J. Comput. Chem. 2001, 22 (11), 1205-1218.

Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81 (8), 3684-3690.

Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. C. Gromacs: Fast, flexible, and free. J. Comput. Chem. 2005, 26 (16), 1701-1718.

Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14 (1), 33-38.

Tian Z.-A., Liu R.-S., Liu H.-R., Zheng C.-X., Hou Z.-Y., Peng P. Molecular dynamics simulation for cooling rate dependence of solidification microstructures of silver. J. Non. Cryst. Solids 2008, 354 (31), 3705-3712.

Medrano L. R., Landauro C. V. Influence of chemical disorder on the electronic level spacing distribution of the nanoparticle: A tight-binding study. Phys. B: Condensed Matter 2013, 412, 122-125.

Van Der Spoel D., Lindahl E., Hess B., van Buuren A. R., Apol E., Meulenhoff P. J., Tieleman D. P., Sijbers A. L. T. M., Feenstra K. A., van Drunen R., Berendsen H. J. C. Gromacs user manual version 4.5.4. www.gromacs.org: 2010; p 372.

Carrasco J., Hodgson A., Michaelides A. A molecular perspective of water at metal interfaces. Nat. Mater. 2012, 11, art. no. 667.

Izvekov S., Voth G. A. Ab initio molecular dynamics simulation of the Ag(111)-water interface. J. Chem. Phys. 2001, 115 (15), 7196-7206.

Ranea V. A., Michaelides A., Ramírez R., Vergés J. A., de Andres P. L., King D. A. Density functional theory study of the interaction of monomeric water with the Ag{111} surface. Phys. Rev. B 2004, 69 (20), art. no. 205411.

Meng S., Wang E. G., Gao S. Water adsorption on metal surfaces: A general picture from density functional theory studies. Phys. Rev. B 2004, 69 (19), art. no. 195404.

Groß A., Gossenberger F., Lin X., Naderian M., Sakong S., Roman T. Water structures at metal electrodes studied by ab initio molecular dynamics simulations. J. Electrochem. Soc. 2014, 161 (8), E3015-E3020.

Tavanti F., Pedone A., Matteini P., Menziani M. C. Computational insight into the interaction of cytochrome c with wet and PVP-coated Ag surfaces. J. Phys. Chem. B 2017, 121 (41), 9532 9540.

Cicero G., Calzolari A., Corni S., Catellani A. Anomalous wetting layer at the Au(111) surface. J. Phys. Chem. Lett. 2011, 2 (20), 2582-2586.

Li X., Ågren H. Molecular dynamics simulations using a capacitance–polarizability force field. J. Phys. Chem. C 2015, 119 (33), 19430-19437.

Цитування

Protonation-dependent adsorption of polyarginine onto silver nanoparticles
Kyrychenko Alexander, Blazhynska Margaret M. & Kalugin Oleg N. (2020) Journal of Applied Physics
Crossref

Опубліковано
2019-06-14
Цитовано
Як цитувати
Blazhynska, M. M., Kyrychenko, A. V., & Kalugin, O. N. (2019). Полярізаційне силове поле для молекулярно-динамічного моделювання наночастинок срібла. Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Хімія», (32), 46-58. https://doi.org/10.26565/2220-637X-2019-32-03