Absorption spectra of Nitrazine Yellow indicator. Experimental data and quantum chemical evaluations
Abstract
This article presents an experimental investigation and theoretical analysis of the electronic absorption spectra of the indicator nitrazine yellow (NY) in aqueous solutions. Quantum chemical modeling of electronically excited states is performed within the framework of time-dependent density functional theory (TD-DFT). A variety of approaches and basis sets are explored, particularly focusing on the B3LYP and CAM-B3LYP functionals. The standard 6-31+G(d,p) basis set is employed, along with combinations using pseudopotential basis sets for Na and S atoms.
In the first variant of calculations, the LanL2DZ basis set (and corresponding pseudopotential) is used for all atoms within the molecules. In the second variant, the LanL2DZ basis set is applied exclusively to Na and S atoms, while the standard valence double-zeta split basis set 6-31+G(d,p) is utilized for the remaining elements (H, C, N, O). Solvent effects on the absorption spectra are incorporated using the polarizable continuum model, employing the linear response method.
Calculations are performed on three forms of NY. Two of these forms (A and B) correspond to azo-hydrazone tautomerism, while the third form (C) represents the deprotonated state. Ground state geometry calculations indicate that the π-conjugated part of form A is largely planar and stabilized by an intramolecular hydrogen bond O-H...N. The tautomeric form B is also characterized by a high degree of planarity in its conjugation system. In contrast, the deprotonated form C shows significant rotation of the 2,4-dinitrophenyl group and the nitro group in the ortho position of the benzene ring.
Analysis of excited-state calculations for the three forms of NY reveals that both variants (B3LYP/LanL2DZ and B3LYP/LanL2DZ/6-31+G(d,p)) require minimal computational resources while producing results that correspond well with the experimentally observed absorption bands.
Downloads
References
Benkhaya S., M'rabet S., Harfi A. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon. 2020, 6 (1), e03271. https://doi.org/10.1016/j.heliyon.2020.e03271
Locher G. Permeability determination of the skin of eczematous and healthy subjects for the new indicator Nitrazine Yellow "Geigy", modification of the alkali resistance test, pH course in the depth of the horny layer. Dermatologica. 1962, 124, 159-182
Eherer A. J, Fordtran J. S. Fecal osmotic gap and pH in experimental diarrhea of various causes. Gastroenterology. 1992, 103, 545–551. https://doi.org/10.1016/0016-5085(92)90845-P
Olarinoye A. O., Olaomo N. O., Adesina K. T. et al. Comparative diagnosis of premature rupture of membrane by nitrazine test, urea, and creatinine estimation. Int J Health Sci (Qassim). 2021, 15(6), 16–22.
Hou J., Liu, X., Hou C. et al. A PVDF-based colorimetric sensor array for noninvasive detection of multiple disease-related volatile organic compounds. Anal Bioanal Chem. 2023, 415, 6647–6661. https://doi.org/10.1007/s00216-023-04941-y
Ielo I., Giacobello F., Sfameni S. et al. Nanostructured Surface Finishing and Coatings: Functional Properties and Applications. Materials (Basel). 2021, 14(11), 2733. https://doi.org/10.3390/ma14112733
Brown J. E., Diaz L., Christoff-Tempesta T., et al. Characterization of Nitrazine Yellow as a Photoacoustically Active pH Reporter Molecule. Anal. Chem. 2015, 87(7), 3623–3630. https://doi.org/10.1021/ac503515k
Trovato V., Sfameni S., Rando G., et al. A review of stimuli-responsive smart materials for wearable technology in healthcare: retrospective, perspective, and prospective. Molecules. 2022, 27(17), 5709. https://doi.org/10.3390/molecules27175709
Sari M., Daud P., Sulistyarti A. et al. An application study of membraneless-gas separation microfluidic paper-based analytical device for monitoring total ammonia in fish pond water using natural reagent. Anal. Sci. 2022, 38, 759–767. https://doi.org/10.1007/s44211-022-00092-9
Trovato V., Vitale A., Bongiovanni R., et al. Development of nitrazine yellow-glycidyl methacrylate coating onto cotton fabric through thermal-induced radical polymerization reactions: a simple approach towards wearable pH sensors applications. Cellulose. 2021, 28, 3847-3868 DOI:10.1007/s10570-021-03733-w
Rauf M. A., Hisaindee S., Saleh N. Spectroscopic studies of keto–enol tautomeric equilibrium of azo dyes. RSC Adv. 2015, 5, 18097–18110. https://doi.org/10.1039/c4ra16184j
Viscardia G., Quagliottoa P., Baroloa C. et al. Structural characterisation of Nitrazine Yellow by NMR spectroscopy. Dyes and Pigments. 2003, 57, 87-95. https://doi.org/10.1016/S0143-7208(02)00164-X
L. Van der Schueren, K. Hemelsoet, V. Van Speybroeck, K. De Clerck The influence of a polyamide matrix on the halochromic behaviour of the pH-sensitive azo dye Nitrazine Yellow. Dyes and Pigments. 2012, 94 (3), 443-451. https://doi.org/10.1016/j.dyepig.2012.02.013
Jacquemin D., Perpète E.A., Scuseria G.E. et al. Extensive TD-DFT investigation of the first electronic transition in substituted azobenzenes. Chem Phys Lett. 2008, 465, 226–229. https://doi.org/10.1016/j.cplett.2008.09.071
Ferrer N., Filatov M., Huix-Rotllant M. Springer International Publishing Switzerland. Density-Functional Methods for Excited States. 2016, 481 р http://dx.doi.org/10.1007/978-3-319-22081-9
Христенко I. В., Іванов В. В. Сольватохромія барвника нільський червоний. TD-DFT розрахунки і експериментальні дані. Вісник Харківського національного університету, серія "Хімія". 2022, вип. 39 (62), 30-37. https://doi.org/10.26565/2220-637X-2022-39-03
Yanai T, Tew D.P, Handy N.C., A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Letters. 2004, 393 (1-3), 51-57. https://doi.org/10.1016/j.cplett.2004.06.011
Jacquemin D., Perpete E.A., Scuseria G. E., Ciofini I., Adamo C. TD-DFT Performance for the Visible Absorption Spectra of Organic Dyes: Conventional versus Long-Range Hybrids. J. Chem. Theory Comput. 2008, 4, 123-135. https://doi.org/10.1021/ct700187z
Cammi R., Cappelli C., Mennucci B., Tomasi J. (2009). Properties of Excited States of Molecules in Solution Described with Continuum Solvation Models. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2687-3_2
Improta R., Barone V., Scalman G., Frisch M. J. Cammi R., Cappelli C., Mennucci B., Tomasi J. (2009). Properties of Excited States of Molecules in Solution Described with Continuum Solvation Models. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2687-3_2
Improta R., Barone V., Scalman G., Frisch M. J. A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J. Chem. Phys. 2006, 125, 054103. https://doi.org/10.1063/1.2222364
Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
Chemcraft - graphical software for visualization of quantum chemistry computations. Version 1.8, build 682. https://www.chemcraftprog.com