Electronic structure of mesoionic compounds. The classification problem

Keywords: mesoionic compounds, density functional theory, quantum theory of atoms in molecules, nuclear independent chemical shifts

Abstract

Mesoionic compounds are conventionally categorized into two types based on the primary origin of electrons within the conjugated system, specifically determined by the arrangement of heteroatoms in the five-membered ring. An examination of diverse mesoionic compounds has been undertaken to address the pivotal query surrounding their classification: does the primary origin of electrons hold significance, and does this criterion demarcate a definitive boundary between the two types of compounds? To comprehensively address this issue, the DFT calculations were performed for a set of mesoionic molecules. The electronic properties of the molecules were studied within the frameworks of quantum theory of atoms in molecules (QTAIM) and the Nuclear Independent Chemical Shift (NICS).

To comprehend the topological distinctions among representatives of the two types, we describe a set of indices designed to characterize the spatial distribution of electronic parameters within the molecular frameworks. The results obtained show that the existing classification is to a certain extent justified, with the main distinguishing factor between the two types being the nature of the distribution of the resulting ellipticities of bonds in five-membered ring and the structure of the molecular orbitals. At the same time, based on NICS calculations we concluded that both classes are not characterized by pronounced aromaticity of the mesoionic ring for the selected set of molecules.

Downloads

Download data is not yet available.

References

Pereira R. A., Pires A. D. R. A., Echevarria A., Sousa-Pereira D., Noleto G. R., Suter Correia Cadena S. M. The toxicity of 1,3,4-thiadiazolium mesoionic derivatives on hepatocarcinoma cells (HepG2) is associated with mitochondrial dysfunction. Chem Biol Interact. 2021, 349, 109675.

Metre T. V., Joshi S. D., Kodasi B., Bayannavar P. K., Nesaragi A. R., Madar S. F., Mavazzan A. R., Kamble R. R. L-proline catalyzed ring transformation of 5-substituted tetrazole to 1,3,4-oxadiazoles as anti-tubercular agents, Synth. Commun. 2022, 52(13–14), 1500-1516.

Kuzmina O. M., Weisel M., Narine A. A. 5-Membered Mesoionic Insecticides: Synthesis and Evaluation of 1,3,4-Thiadiazol-4-ium-2-olates with High Affinity for the Insect Nicotinic Acetylcholine Receptor. Eur. J. Chem. 2019, 31-32, 5527-5531.

Dengyue L., Runjiang S., Zengxue W., Zhifu X., Deyu H. Pyrido [1,2-a] Pyrimidinone Mesoionic Compounds Containing Vanillin Moiety: Design, Synthesis, Antibacterial Activity, and Mechanism. J. Agric. Food Chem. 2022, 70 (34), 10443–10452.

Shugui H., Xia W., Zeyu L., Tian L., Mengdi Z. Effects of external field wavelength and solvation on the photophysical property and optical nonlinearity of 1,3-thiazolium-5-thiolates mesoionic compound. Spectrochim. Acta A Mol. 2023, 289,122227.

Lücke A.-L., Wiechmann S., Freese T., Guan Z., Schmidt A. Palladium complexes of anionic N-heterocyclic carbenes derived from sydnones in catalysis. Z Naturforsch B 2016, 71(6), 643–650.

Handa N. V., Li S., Gerbec J. A., Sumitani N., Hawker C. J., Klinger D. Fully Aromatic High Performance Thermoset via Sydnone–Alkyne Cycloaddition. J. Am. Chem. Soc. 2016, 138(20), 6400–6403.

H. Kurabayashi, T. Hirashita, S.Araki. The Mizoroki-Heck reaction in mesoionic 1-butyl-3-methyltetrazolium-5-olate. Tetrahedron 2021, 99, 132450.

Sizov G. N., Babaev E. V. Criteria for a Structure to be Mesoionic. MATCH Commun. Math. Comput. Chem. 2023, 89, 5-47.

Ramsden C. A., Dumitrascu F. Type A mesoionic compounds (1980–2020). In Heterocyclic Mesomeric Betaines and Mesoionic Compounds 2022, Ramsden, C. A., Ed. Advances in Heterocyclic Chemistry: 2022; Vol. 137, pp 71-189.

Ramsden C. A., Oziminski W. P. A DFT study of isomeric conjugated, cross-conjugated and semi-conjugated six-membered heterocyclic mesomeric betaines. Tetrahedron 2014, 70(40), 7158–7165.

Ramsden C. A. Heterocyclic mesomeric betaines: the recognition of five classes and nine sub-classes based on connectivity-matrix analysis. Tetrahedron 2013, 69(20), 4146–4159.

Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

AIMAll, Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2019.

Kumar P. S. V., Raghavendra V., Subramanian V. Bader’s Theory of Atoms in Molecules (AIM) and its Applications to Chemical Bonding. J Chem Sci 2016, 128(10), 1527–1536.

Shugui H., Xia W., Zeyu L., Tian L., Mengdi Z. Effects of external field wavelength and solvation on the photophysical property and optical nonlinearity of 1,3-thiazolium-5-thiolates mesoionic compound. Spectrochim. Acta A Mol. 2023, 289, 122227.

Anjos I. C., Rocha G. B. A topological assessment of the electronic structure of mesoionic compounds. J. Comp. Chem. 2015, 36(25), 1907–1918.

Oziminski W. P., Ramsden C. A. A DFT and ab initio study of conjugated and semi-conjugated mesoionic rings and their covalent isomers. Tetrahedron 2015, 71(39), 7191–7198.

Published
2024-06-21
Cited
How to Cite
Kyrpa, M., Kovalenko, S., & Ivanov, V. (2024). Electronic structure of mesoionic compounds. The classification problem. Kharkiv University Bulletin. Chemical Series, (42), 38-44. https://doi.org/10.26565/2220-637X-2024-42-04