Nile Red solvatochromy. TD-DFT calculations and experimental data

Keywords: Nile Red, density functional theory, density functionals, environmental effects

Abstract

The problem of theoretical (quantum chemical) description of electronic absorption spectra and, in particular, solvatochromism, for a well-known Nile Red dye has been investigated. In particular, we consider the use of the time-dependent density functional theory TD-DFT. A number of popular functionals have been investigated, including B3LYP, CAM-B3LYP, M06-L, M06-2X, PBE, BMK, and wB97XD. The standard AO basis set with polarization and diffusion functions 6-31+G(d,p) was used. To describe the effects of the media, three common models based on the polarization-continuum approach were considered. These models include the State Specific (SS) method, the Linear Response (LR) method, and the so-called universal solvation model (Solvation Model Density, SMD). It was found that, in general, the bulk of the functionals are able to qualitative description of the spectral properties of the dye. For the studied system, the best results of the solvation effects descriptions were achieved using the SMD method with the M06-L and B3LYP functionals.

Received 05.10.2022

Accepted 29.11.2022

Downloads

Download data is not yet available.

References

Jose J., Burgess K. Benzophenoxazine-based fluorescent dyes for labeling biomolecules. Tetrahedron. 2006, 62, 11021-11037. https://doi.org/10.1016/j.tet.2006.08.056

Martinez V., Henary M. Nile Red and Nile Blue: application and syntheses of structural analogues. J. Chemistry a European. 2016, 22, 13764-13782. https://doi.org/10.1002/chem.201601570

Rong X., Xu Z.-Y., Yan J.-W., Meng Z.-Z., Zhu B., Zhang L. Nile-red-based fluorescence probe for selective detection of biothiols, computational study, and application in cell imaging. Molecules. 2020, 25, 4718-4731. https://doi.org/10.3390/molecules25204718

Fam Tk. K., Klymchenko A. S., Collot M. Recent Advances in Fluorescent Probes for Lipid Droplets. Materials. 2018, 11, 1768. https://doi.org/10.3390/ma11091768

Möhlau R., Uhlmann K. Zur Kenntniss der Chinazin- und Oxazinfarbstoffe. Liebigs Annalen der Chemie. 1896, 289, 90-130. https://chemistry-urope.onlinelibrary.wiley.com/toce /10990690d/1896/289/1

Hornum M., Reinholdt P., Zaręba J. K., Jensen B. B., Wüstner D., Samoć M., Nielsen P., Kongsted J. One- and two-photon solvatochromism of the fluorescent dye Nile Red and its CF3, F and Br-substituted analogues. Photochemical & Photobiological Sciences. 2020, 19, 1382–1391. https://doi.org/10.1039/D0PP00076K

Erni-Cassola G., Gibson M. I., Thompson R. C., Christie-Oleza J. Lost, but found with Nile red; a novel method to detect and quantify small microplastics (20 µm – 1 mm) in environmental samples. Environmental Science and Technology. 2017, 51(23), 13641-13648. https://doi.org/10.1021/acs.est.7b04512

Sadak O., Sundramoorthy A. K., Gunasekaran S. Highly selective colorimetric and electrochemical sensing of iron (III) using Nile red functionalized graphene film. Biosensors and Bioelectronics. 2016, 89(1), 430-436. https://doi.org/10.1016/j.bios.2016.04.073

van Faassen M. Time-Dependent Current-Density-Functional Theory for Molecules. International J. Mod. Physics B. 2006, 20 (24), 3419-3463. https://doi.org/10.1142/S0217979206035679

Ferrer N., Filatov M., Huix-Rotllant M., Londin. Springer International Publishing Switzerland. Density-Functional Methods for Excited States. 2016, 481 р.

Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

Cammi R., Cappelli C., Mennucci B., Tomasi J. (2009). Properties of Excited States of Molecules in Solution Described with Continuum Solvation Models. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2687-3_2

Improta R., Barone V., Scalman G., Frisch M. J. A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J. Chem. Phys. 2006, 125, 054103. https://doi.org/10.1063/1.2222364

Cammi R., Corni S., Mennucci B., Tomasi J. Electronic excitation energies of molecules in solution: State specific and linear response methods for nonequilibrium continuum solvation models J. Chem. Phys. 2005, 122, 104513. https://doi.org/10.1063/1.1867373

Marenich A. V., Cramer C. J., Truhlar D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B. 2009, 113, 6378–6396. https://doi.org/10.1021/jp810292n

Marenich A. V., Cramer C. J., Truhlar D. G. Sorting Out the Relative Contributions of Electrostatic Polarization, Dispersion, and Hydrogen Bonding to Solvatochromic Shifts on Vertical Electronic Excitation Energies. J. Chem. Theory Comput. 2010, 6, 2829–2844. https://doi.org/10.1021/ct100267s

Mera-Adasme R., Rezende M. C., Domínguez M. On the physical-chemical nature of solvent polarizability and dipolarity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020, 229, 118008. https://doi.org/10.1016/j.saa.2019.118008

Ghanadzadeh Gilani A., Moghadam M., Zakerhamidi M. S. Solvatochromism of Nile red in anisotropic media. Dyes and Pigments. 2012, 92, 1052-1057. https://doi.org/10.1016/j.dyepig.2011.07.018

McRae E. G., Theory of solvent effects on molecular electronic spectra. Frequency shifts. J. Phys. Chem. 1957, 61( 5), 562–572. https://doi.org/10.1021/j150551a012

Zuehlsdorff T. J., Haynes P. D., Payne M. C., Hine N. D. M., Predicting solvatochromic shifts and colors of a solvated organic dye: The example of Nile Red. J. Chem. Phys. 2017, 146, 124504. https://doi.org/10.1063/1.4979196

Published
2022-10-05
Cited
How to Cite
Khristenko, I., & Ivanov, V. (2022). Nile Red solvatochromy. TD-DFT calculations and experimental data. Kharkiv University Bulletin. Chemical Series, (39), 30-37. https://doi.org/10.26565/2220-637X-2022-39-03