Evolutionary Structure Optimization of Ensitrelvir as Non-Covalent Inhibitor of SARS-CoV-2 Main Protease Mpro

Keywords: coronavirus, COVID-19, heterocyclic compounds, Mpro, evolutionary library, molecular docking

Abstract

Ensitrelvir is a non-covalent, non-peptide inhibitor of the SARS-CoV-2 main protease, Mpro. It has demonstrated effective antiviral activity against various coronavirus variants in vitro, along with favorable drug metabolism and pharmacokinetic profiles suitable for oral treatment. Thus, developing novel analogues of ensitrelvir is of great importance. In this study, we conducted in silico design of its analogues by employing evolutionary structure optimization of the parent ensitrelvir scaffold. In the first stage, we generated a virtual evolutionary library consisting of 6334 new analogues based on a series of fitness criteria, including molecular weight (Mw), cLogP, polar surface area, structural and conformational similarity, flexibility, and molecular shape. Next, we filtered the evolutionary library using a 3D pharmacophore model created from the available X-ray structure of the co-crystallized complex of ensitrelvir and Mpro. We then performed molecular docking calculations to rank the selected candidates according to their binding affinity and selectivity for the Mpro receptor. This binding score ranking allowed us to identify ten analogues of ensitrelvir that exhibit superior binding affinity to the protease Mpro compared to the original ensitrelvir inhibitor. Our evolutionary structure optimization indicates that the primary structural modifications that enhance the overall antiviral effect of ensitrelvir are found in the 1-methyl-1H-1,2,4-triazole and 6-chloro-2-methyl-2H-indazole fragments.

Downloads

Download data is not yet available.

References

Yevsieieva L. V., Lohachova K. O., Kyrychenko A., Kovalenko S. M., Ivanov V. V., Kalugin O. N. Main and papain-like proteases as prospective targets for pharmacological treatment of coronavirus SARS-CoV-2. RSC Adv. 2023, 13 (50), 35500–35524. https://doi.org/10.1039/d3ra06479d

Polatoğlu I., Oncu-Oner T., Dalman I., Ozdogan S. COVID-19 in early 2023: Structure, replication mechanism, variants of SARS-CoV-2, diagnostic tests, and vaccine & drug development studies. MedComm 2023, 4 (2), e228. https://doi.org/10.1002/mco2.228

Lau J. J., Cheng S. M. S., Leung K., Lee C. K., Hachim A., Tsang L. C. H., Yam K. W. H., Chaothai S., Kwan K. K. H., Chai Z. Y. H., Lo T. H. K., Mori M., Wu C., Valkenburg S. A., Amarasinghe G. K., Lau E. H. Y., Hui D. S. C., Leung G. M., Peiris M., Wu J. T. Real-world COVID-19 vaccine effectiveness against the Omicron Ba.2 variant in a SARS-CoV-2 infection-naive population. Nat. Med. 2023, 29 (2), 348-357. https://doi.org/10.1038/s41591-023-02219-5

Fischer C., Willscher E., Paschold L., Gottschick C., Klee B., Diexer S., Bosurgi L., Dutzmann J., Sedding D., Frese T., Girndt M., Hoell J. I., Gekle M., Addo M. M., Schulze zur Wiesch J., Mikolajczyk R., Binder M., Schultheiß C. SARS-CoV-2 vaccination may mitigate dysregulation of IL-1/IL-18 and gastrointestinal symptoms of the post-COVID-19 condition. npj Vaccines 2024, 9 (1), 23. https://doi.org/10.1038/s41541-024-00815-1

Carabelli A. M., Peacock T. P., Thorne L. G., Harvey W. T., Hughes J., de Silva T. I., Peacock S. J., Barclay W. S., de Silva T. I., Towers G. J., Robertson D. L., Consortium C.-G. U. SARS-CoV-2 variant biology: Immune escape, transmission and fitness. Nat. Rev. Microbiol. 2023, 21 (3), 162-177. https://doi.org/10.1038/s41579-022-00841-7

Markov P. V., Ghafari M., Beer M., Lythgoe K., Simmonds P., Stilianakis N. I., Katzourakis A. The evolution of SARS-CoV-2. Nat. Rev. Microbiol. 2023, 21 (6), 361-379. https://doi.org/10.1038/s41579-023-00878-2

Uriu K., Ito J., Zahradnik J., Fujita S., Kosugi Y., Schreiber G., Sato K. Enhanced transmissibility, infectivity, and immune resistance of the SARS-CoV-2 omicron Xbb.1.5 variant. Lancet. Infect. Dis. 2023, 23 (3), 280-281. https://doi.org/10.1016/S1473-3099(23)00051-8

Wang Z., Yang L. Post-acute sequelae of SARS-CoV-2 infection: A neglected public health issue. Front. Public Health 2022, 10, 908757. https://doi.org/10.3389/fpubh.2022.908757

Davis H. E., McCorkell L., Vogel J. M., Topol E. J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21 (3), 133-146. https://doi.org/10.1038/s41579-022-00846-2

Blomberg B., Mohn K. G.-I., Brokstad K. A., Zhou F., Linchausen D. W., Hansen B.-A., Lartey S., Onyango T. B., Kuwelker K., Sævik M., Bartsch H., Tøndel C., Kittang B. R., Madsen A., Bredholt G., Vahokoski J., Fjelltveit E. B., Bansal A., Trieu M. C., Ljostveit S., Olofsson J. S., Ertesvåg N., Sandnes H. H., Corydon A., Søyland H., Eidsheim M., Jakobsen K., Guldseth N., Hauge S., Cox R. J., Langeland N., Bergen C.-R. G. Long COVID in a prospective cohort of home-isolated patients. Nat. Med. 2021, 27 (9), 1607-1613. https://doi.org/10.1038/s41591-021-01433-3

Walker A. P., Fan H., Keown J. R., Knight M. L., Grimes Jonathan M., Fodor E. The SARS-CoV-2 RNA polymerase is a viral rna capping enzyme. Nucleic Acids Res. 2021, 49 (22), 13019-13030. https://doi.org/ 10.1093/nar/gkab1160

Yin W., Mao C., Luan X., Shen D.-D., Shen Q., Su H., Wang X., Zhou F., Zhao W., Gao M., Chang S., Xie Y.-C., Tian G., Jiang H.-W., Tao S.-C., Shen J., Jiang Y., Jiang H., Xu Y., Zhang S., Zhang Y., Xu H. E. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by Remdesivir. Science 2020, 368 (6498), 1499. https://doi.org/10.1126/science.abc1560

Poduri R., Joshi G., Jagadeesh G. Drugs targeting various stages of the SARS-CoV-2 life cycle: Exploring promising drugs for the treatment of COVID-19. Cellular Signalling 2020, 74 109721. https://doi.org/10.1016/j.cellsig.2020.109721

Zakharov A. B., Kyrpa M., Kyrychenko A. V., Kovalenko S. M., Kalugin O. N., Ivanov V. V., Adamowicz L. Towards the computational design of organic molecules with specified properties. Struct. Chem. 2025, 36 (2), 723-738. https://doi.org/10.1007/s11224-024-02441-y

., Lagarias P., Gao A., Townsend J. A., Meng X., Dube P., Zhang X., Hu Y., Kitamura N., Hurst B., Tarbet B., Marty M. T., Kolocouris A., Xiang Y., Chen Y., Wang J. Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against Mpro and Cathepsin l. Sci. Adv. 2020, 6 (50), eabe0751. https://doi.org/10.1126/sciadv.abe0751

Unoh Y., Uehara S., Nakahara K., Nobori H., Yamatsu Y., Yamamoto S., Maruyama Y., Taoda Y., Kasamatsu K., Suto T., Kouki K., Nakahashi A., Kawashima S., Sanaki T., Toba S., Uemura K., Mizutare T., Ando S., Sasaki M., Orba Y., Sawa H., Sato A., Sato T., Kato T., Tachibana Y. Discovery of S-217622, a noncovalent oral SARS-CoV-2 3CL protease inhibitor clinical candidate for treating COVID-19. J. Med. Chem. 2022, 65 (9), 6499-6512. https://doi.org/10.1021/ acs.jmedchem.2c00117

Noske G. D., de Souza Silva E., de Godoy M. O., Dolci I., Fernandes R. S., Guido R. V. C., Sjö P., Oliva G., Godoy A. S. Structural basis of Nirmatrelvir and Ensitrelvir activity against naturally occurring polymorphisms of the SARS-CoV-2 main protease. J. Biol. Chem. 2023, 299 (3). https://doi.org/10.1016/j.jbc.2023.103004

Duan Y., Zhou H., Liu X., Iketani S., Lin M., Zhang X., Bian Q., Wang H., Sun H., Hong S. J., Culbertson B., Mohri H., Luck M. I., Zhu Y., Liu X., Lu Y., Yang X., Yang K., Sabo Y., Chavez A., Goff S. P., Rao Z., Ho D. D., Yang H. Molecular mechanisms of SARS-CoV-2 resistance to Nirmatrelvir. Nature 2023, 622 (7982), 376-382. https://doi.org/10.1038/s41586-023-06609-0

Kovalevsky A., Aniana A., Ghirlando R., Coates L., Drago V. N., Wear L., Gerlits O., Nashed N. T., Louis J. M. Effects of SARS-CoV-2 main protease mutations at positions L50, E166, and L167 rendering resistance to covalent and noncovalent inhibitors. J. Med. Chem. 2024, 67 (20), 18478-18490. https://doi.org/10.1021/acs.jmedchem.4c01781

Lopez U. M., Hasan M. M., Havranek B., Islam S. M. SARS-CoV-2 resistance to small molecule inhibitors. Curr. Clin. Micro Rpt. 2024, 11 (3), 127-139. https://doi.org/10.1007/s40588-024-00229-6

Krismer L., Schöppe H., Rauch S., Bante D., Sprenger B., Naschberger A., Costacurta F., Fürst A., Sauerwein A., Rupp B., Kaserer T., von Laer D., Heilmann E. Study of key residues in MERS-CoV and SARS-CoV-2 main proteases for resistance against clinically applied inhibitors nirmatrelvir and ensitrelvir. npj Viruses 2024, 2 (1), 23. https://doi.org/10.1038/s44298-024-00028-2

Lin C., Jiang H., Li W., Zeng P., Zhou X., Zhang J., Li J. Structural basis for the inhibition of coronaviral main proteases by Ensitrelvir. Structure 2023, 31 (9), 1016-1024.e3. https://doi.org/10.1016/j.str.2023.06.010

Kiso M., Yamayoshi S., Iida S., Furusawa Y., Hirata Y., Uraki R., Imai M., Suzuki T., Kawaoka Y. In vitro and in vivo characterization of SARS-CoV-2 resistance to Ensitrelvir. Nat. Commun. 2023, 14 (1), 4231. https://doi.org/10.1038/s41467-023-40018-1

Sander T., Freyss J., von Korff M., Rufener C. Datawarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 2015, 55 (2), 460-473. https://doi.org/10.1021/ci500588j

Lohachova K. O., Sviatenko A. S., Kyrychenko A., Ivanov V. V., Langer T., Kovalenko S. M., Kalugin O. N. Computer-aided drug design of novel nirmatrelvir analogs inhibiting main protease of coronavirus SARS-COV-2. J. Appl. Pharm. Sci. 2024, 14 (5), 232-239. https://doi.org/10.7324/JAPS.2024.158114

Wolber G., Langer T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 2005, 45 (1), 160-169. https://doi.org/10.1021/ci049885e

Trott O., Olson A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31 (2), 455-461. doi: https://doi.org/10.1002/jcc.21334

Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14 (1), 33-38. https://doi.org/10.1016/0263-7855(96)00018-5

Ivanov V., Lohachova K., Kolesnik Y., Zakharov A., Yevsieieva L., Kyrychenko A., Langer T., Kovalenko S. M., Kalugin O. M. Recent advances in computational drug discovery for therapy against coronavirus SARS-CoV-2. ScienceRise: Pharm. Sci. 2023, 6(46), 4-24. https://doi.org/10.15587/2519-4852.2023.290318

Ertl P., Rohde B., Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000, 43 (20), 3714-3717. https://doi.org/10.1021/jm000942e

Yevsieieva L., Trostianko P., Kyrychenko A., Ivanov V., Kovalenko S., Kalugin O. Design of non-covalent dual-acting inhibitors for proteases Mpro and PLpro of coronavirus SARS-CoV-2 through evolutionary library generation, pharmacophore profile matching, and molecular docking calculations. Sci. Rise. Pharm. Sci. 2024, 6(52), 15-26. https://doi.org/10.15587/2519-4852.2024.313808

Ruiz-Moreno A. J., Cedillo-González R., Cordova-Bahena L., An Z., Medina-Franco J. L., Velasco-Velázquez M. A. Consensus pharmacophore strategy for identifying novel SARS-CoV-2 Mpro inhibitors from large chemical libraries. J. Chem. Inf. Model. 2024, 64 (6), 1984-1995. https://doi.org/10.1021/acs.jcim.3c01439

Anokhin D., Kovalenko S., Trostianko P., Kyrychenko A., Zakharov A., Zubatiuk T., Ivanov V., Kalugin O. Towards the discovery of molecules with anti-COVID-19 activity: Relationships between screening and docking results. Kharkiv University Bulletin. Chemical Series 2024, (42), 6-14. https://doi.org/10.26565/2220-637X-2024-42-01

Kyrychenko A., Bylov I., Geleverya A., Kovalenko S., Zhuravel I., Fetyukhin V., Langer T. Computer-aided rational design and synthesis of new potential antihypertensive agents among 1,2,3-triazole-containing nifedipine analogs. SciRise: Pharm. Sci. 2024, 49 (3), 4-12. https://doi.org/10.15587/2519-4852.2024.291626

Zahrychuk H. Y., Gladkov E. S., Kyrychenko A. V., Poliovyi D. O., Zahrychuk O. M., Kucher T. V., Logoyda L. S. Structure-based rational design and virtual screening of valsartan drug analogs towards developing novel inhibitors of angiotensin II type 1 receptor. Biointerface Res. Appl. Chem. 2023, 13 (5), 440. https://doi.org/10.33263/BRIAC135.440

Vincenzi M., Mercurio A. F., Leone M. Looking for SARS-CoV-2 therapeutics through computational approaches. Curr. Med. Chem. 2023, 30 (28), 3158-3214. http://dx.doi.org/10.2174/0929867329666221004104430

Published
2024-09-27
Cited
How to Cite
Lohachova, K., Sviatenko, A., Kyrychenko, A., & Kalugin, O. (2024). Evolutionary Structure Optimization of Ensitrelvir as Non-Covalent Inhibitor of SARS-CoV-2 Main Protease Mpro. Kharkiv University Bulletin. Chemical Series, (43), 26-37. https://doi.org/10.26565/2220-637X-2024-43-02